期刊文献+

人体姿势估计中随机森林训练算法的并行化 被引量:2

Parallelization for randomized forests used in human pose estimation
下载PDF
导出
摘要 针对用深度图进行人体姿势估计算法中随机森林训练模块的资源消耗大、训练时间长等问题,提出在小规模的集群服务器上用消息传递接口技术对随机森林算法进行并行化加速,并结合算法进行优化以降低存储消耗和占用带宽等,进一步提高训练速度。实验结果表明,在小型集群服务器上不到一天时间完成一次训练,速度相比原来提升约30倍,分类器的像素识别率超过80%,骨架节点的实际误差也足够小,经加速后可以及时进行多次训练,从而完成对训练参数的调整和测试。 The randomized forests training algorithm used in depth image human pose estimation caused problems of large re- sources and training time cost. This paper proposed the parallelization design using message passing interface on small cluster server, then optimized to decrease the storage and bandwidth cost. Experiments show that the processing speed is enhanced by 30 times, one training cost less than one day on the cluster, the pixel precision of training classifier is more than 80% and skele- ton errors are smaller. The proposed parallelization method can finish the training in time to adjust and test the parameters.
出处 《计算机应用研究》 CSCD 北大核心 2014年第5期1558-1561,1576,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61132007 61271390)
关键词 人体姿势估计 随机森林 并行化设计 消息传递接口 human pose estimation random forests parallelization design message passing interface(MPI)
  • 相关文献

参考文献11

  • 1AGARWAL A,TRIGGS B.3D human pose from silhouettes by relevance vector regression[C]//Proc of IEEE Conference on CVPR.2004:882-888.
  • 2HU Zhi-lan,WANG Gui-jin,LIN Xing-gang,et al.Recovery of upper body poses in static images based on joints detection[J].Pattern Recognition Letters,2009,30(5):503-512.
  • 3GANAPATHI V,PLAGEMANN C,KOLLER D,et al.Real time motion capture using a single time-of-flight camera[C]//Proc of IEEE Conference on CVPR.2010:755-762.
  • 4WILSON J L.Microsoft Kinect for Xbox 360[EB/OL].(2010).http:/www.pcmag.com/article/o,2817,2372069,00.asp Mag.Com.
  • 5SHOTTON J,FITZGIBBON A,COOK M,et al.Real-time human pose recognition in parts from single depth images[C]//Proc of IEEE Conference on CVPR.2011:1297-1304.
  • 6ROGEZ G,RIHAN J,RAMALINGAM S,et al.Randomized trees for human pose detection[C]//Proc of IEEE Conference on CVPR.2008:1-8.
  • 7BREIMAN L.Random forests[J].Machine Learning,2001,45(1):5-32.
  • 8KATH R.Managing memory-mapped files in Win32[EB/OL].http://msdn.microsoft.com.
  • 9GROPP W.MPICH2:a new start for MPI implementations[M]//Recent Advances in Parallel Virtual Machine and Message Passing Interface.Berlin:Springer,2002.
  • 10吕治国,李焱,贺汉根.基于Poser模型的三维人体建模方法[J].计算机工程,2008,34(13):256-258. 被引量:21

二级参考文献3

  • 1毛天露,王兆其.个性化三维人体模型快速建模方法[J].计算机辅助设计与图形学学报,2005,17(10):2191-2195. 被引量:21
  • 2洪炳熔.虚拟现实及其应用[M].北京:国防工业出版社,2005.
  • 3Niku SB.机器人学导论--分析、系统及应用[M].孙富春,译.北京:电子工业出版社,2004.

共引文献20

同被引文献30

  • 1AGARWAL A, TRIGGS B. 3D human pose from silhouettes by rele- vance vector regression [ C ]//Proc of IEEE Conference on CVPR. 2004:882- 888.
  • 2HU Zhi-lan, WANG Gui-jin, LIN Xing-gang, et al. Recovery of up- per body poses in static images based on joints detection [ J ]. Pat- tern Recognition Letters, 2009,30(5):503-512.
  • 3GANAPATHI V, PLAGEMANN C, KOLLER D, et al. Real time motion capture using a single time-of-flight camera [ C]//Proc of IEEE Conference on CVPR. 2010:755-762.
  • 4SHI Chen-bo, WANG Gui-jin, PEI Xiao-kang, et al. An interleaving updating framework of disparity and confidence map for stereo matc- hing[J]. IEICE Trans on Information and Systems, 2012, 95 (5) : 1552-1555.
  • 5WILSON J L. Microsoft Kinect for Xbox 360 [ EB/OL]. (2010). http ://www. pcmag, com/articlez/o ,2181,2372069,00. asp.
  • 6SHOTTON J, FITZGIBBON A, COOK M, et al. Real-time human pose recognition in parts from single depth images [ C ]//Proe of IEEE Conference on CVPR. 2011 : 1297-1304.
  • 7ROGEZ G, RIHAN J, RAMALINGAM S, et al. Randomized trees for human pose detection[ C ]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. 2008: 1-8.
  • 8BREIMAN L. Random forests [J]. Machine Learning, 2001,45 (1):5-32.
  • 9COMANICIU D, MEER P. Mean-Shift: a robust approach toward feature space analysis [ J ]. iEEE -I-rans on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619.
  • 10LI Yan-li, WANG Gui-jin, LIN Xing-gang, et al. Real-time depth- based segmentation and tracking of multiple objects [ C ]//Proc of IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems. [ S. 1. ] : IEEE Press, 2012: 429- 433.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部