摘要
在Von-Mises屈服准则及正交流动准则的前提下,建立了循环载荷下叠加型A-F(Armstrong-Frederick)非线性随动强化模型的迭代算法,并根据塑性应变增量的收敛控制实现内部的平衡迭代。为验证本文数值方法的正确性,以Chaboche和Ohno-Abde-Karim随动硬化模型为例,将本文方法的计算结果与通用有限元软件ANSYS的分析结果及试验数据进行了比较,均吻合良好,验证了本文算法的可靠性。
The numerical iterative algorithm of the superposed Armstrong-Frederick nonlinear kinematic hardening model under cyclic loadings was investigated based on the Mises yielding criterion and the orthogonal flow rule. The increment of plastic strain was used to attain the equilibrium and convergence of governing equations. To verify the validity of the proposed iterative algorithm,Chaboche and Ohno-Ab- del-Karim kinematic hardening models were calculated based on the iterative algorithm,and the analyzed results were in good agreement with those of obtained by finite element method and experimental data, which indicates the reliability of the proposed iterative algorithm.
出处
《计算力学学报》
CAS
CSCD
北大核心
2014年第2期281-284,共4页
Chinese Journal of Computational Mechanics
基金
国家自然科学基金(50976080)
湖北省教育厅科学研究计划(Q20131516)资助项目
关键词
随动强化
迭代算法
ANSYS
循环载荷
kinematic hardening
iterative algorithm
ANSYS
cyclic loadings