期刊文献+

循环载荷下随动硬化模型的数值迭代算法

Numerical iterative algorithm of kinematic hardening model under cyclic loadings
下载PDF
导出
摘要 在Von-Mises屈服准则及正交流动准则的前提下,建立了循环载荷下叠加型A-F(Armstrong-Frederick)非线性随动强化模型的迭代算法,并根据塑性应变增量的收敛控制实现内部的平衡迭代。为验证本文数值方法的正确性,以Chaboche和Ohno-Abde-Karim随动硬化模型为例,将本文方法的计算结果与通用有限元软件ANSYS的分析结果及试验数据进行了比较,均吻合良好,验证了本文算法的可靠性。 The numerical iterative algorithm of the superposed Armstrong-Frederick nonlinear kinematic hardening model under cyclic loadings was investigated based on the Mises yielding criterion and the orthogonal flow rule. The increment of plastic strain was used to attain the equilibrium and convergence of governing equations. To verify the validity of the proposed iterative algorithm,Chaboche and Ohno-Ab- del-Karim kinematic hardening models were calculated based on the iterative algorithm,and the analyzed results were in good agreement with those of obtained by finite element method and experimental data, which indicates the reliability of the proposed iterative algorithm.
出处 《计算力学学报》 CAS CSCD 北大核心 2014年第2期281-284,共4页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(50976080) 湖北省教育厅科学研究计划(Q20131516)资助项目
关键词 随动强化 迭代算法 ANSYS 循环载荷 kinematic hardening iterative algorithm ANSYS cyclic loadings
  • 相关文献

参考文献13

  • 1Armstrong P J, Frederick CO. A Mathematical Rep- resentation of the Multiaxial Bauschinger Effect [R]. CEGB, 1966 ,Report RD/B/N73.
  • 2Chaboche J L, Nouailhas D. Constitutive modeling of ratcheting effects (Part I) experimental facts and properties of the classical models[J]. ASME Journal of Engineering Materials and Technology, 1989, 111(4) :384-392.
  • 3Chaboche J L. On some modifications of kinematic hardening to improve the description of ratcheting effects [J ]. International Journal of Plasticity, 1991,7(7) :661-678.
  • 4Ohno N, Wang J D. Kinematic hardening rules with critical statc of dynamic recovery (Part I) formulation and basic features for ratcheting behavior[J]. Inter-national Journal of Plasticity, 1993,9(3) ; 375-390.
  • 5. Ohno N, Wang J D. Kinematic hardening rules with critical state of dynamic recovery (Part II) Applica- tion to experiments of ratcheting behavior[J]. Inter- national Journal of Plasticity, 1993,9(3) ;391-403.
  • 6Jiang Y, Sehitoglu H. Comments on the mroz multiple surface type plasticity models[J]. International Jour- nal of Solid and Structures, 1996,33(7) ; 1053-1068.
  • 7Bari S, Hassan T. An advancement in cyclic plasticity modeling for multiaxial ratcheting simulation I-J]. International Journal of Plasticity, 2002, 18 (7) ; 873-894.
  • 8Chen X,Jiao R. Modified kinematic hardening rule for multiaxial ratcheting prediction [J]. International Journal of Plasticity ,2004,20(4-5) .. 871-898.
  • 9Chen X,Jiao R, Kim KS. On the ohno-wang kinematic hardening rules for multiaxial ratcheting modeling of medium carbon steel[J]. International Journal of Plasticity ,2005,21 (1) .. 161-184.
  • 10Ohno N, Abdel-Karim M. Uniaxial ratcheting of 316FR steel at room temperature(Part If)constitutive modeling and simulation[J]. ASME Journal of En- gineering Material Technology, 2000,122 (1) : 35-41.

二级参考文献10

  • 1OHNO N, WANG J D. Kinimatic hardening rules with critical state of dynamic recovery, Part I:Formulation and basic features for ratcheting behavior [J]. International Journal of Plasticity,1993,9:375-390.
  • 2OHNO N, WANG J D. Kinimatic hardening rules with critical state of dynamic recovery, Part Ⅱ:Application to experiments of ratcheting behavior[J]. International Journal of Plasticity, 1993, 9:391-403.
  • 3SIMO J C ,TAYLOR R L. Consistent tangent operators for rate-independent elastoplasticity [J].Computer Methods in Applied Mechanics and Engineering, 1985,48: 101-118.
  • 4CRISFIELD M A. Non-linear finite element analysis of solid and structure[J]. John Wiley & Sons. New York, 1997,2:158-186.
  • 5ANSYS, Inc. Guide to ANSYS user programmable Features[R]. ANSYS Release 6.1,2002.
  • 6SHAQUL B, TASNIM H. Anatomy of coupled constitutive models for ratcheting simulation [J].International Journal of Plasticity, 2000, 16:381-409.
  • 7ARMSTRONG P J,FREDERICK C O. A Mathematical Representation of the Multiaxial Bauschinger effect[R]. C E G B, 1966, Report RD/B/N73.
  • 8CHABOCHE J L, NOUAILHAS D. Constitutive modeling of ratcheting effects-Part I: Experimental facts and properties of the classical models [J].ASME Journal of Engineering Materials and Technology, 1989,111:384-392.
  • 9CHABOCHE J L. On some modifications of kinematic hardening to improve the description of ratcheting effects[J]. International Journal of Plasticity, 1991,7:661-678.
  • 10李庆扬 王能超 易大庆编.数值分析[M].武汉:华中理工大学出版社,1982..

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部