摘要
本文主要给出了分块矩阵的加权广义逆P(1,3M),P(1,4N)与其相对应的加权广义逆的Banachiewicz-Schur形式相等的证明。利用二者之差的秩等于零证明了该形式的存在性,以及二者相等时的充要条件。
The conditions under which the weighted generalized inversesP(1,3M) and P(1,4N) can be expressed in Banachiewicz-Schur form are given in this paper. The existence of this form is proved by means of making a differ- ence of the two formulas which is 0, as well as the necessary and sufficient conditions when these two are equal.
出处
《贵州科学》
2014年第2期11-13,共3页
Guizhou Science
关键词
分块矩阵
加权广义逆
SCHUR补
block matrices ,weighted generalized inverse, Schur complement