期刊文献+

(3)-泛圈图的一些必要条件 被引量:3

Some Necessary Conditions for(3)-pancyclic Graphs
下载PDF
导出
摘要 本文主要介绍了一类(3)-泛圈图,即对每一个t,3≤t≤n,阶为n的图G恰有三个长为t的圈,并给出(3)-泛圈图的一些必要条件. In this paper, we introduce the class of (3)-pancyclic graphs, which are simple undirected finite connected graphs of order n having exactly three cycles of length t for each t satisfying 3 ≤ t ≤ n, and give some necessary conditions for (3)-pancyclie graphs.
出处 《闽南师范大学学报(自然科学版)》 2014年第1期7-15,共9页 Journal of Minnan Normal University:Natural Science
基金 国家自然科学基金项目(11101358 61379021) 福建省自然科学基金资助项目(2011J01026) 福建省自然科学基金青年人才创新项目(2011J05014) 福建省教育厅资助科技项目(JA11165) 闽南师范大学研究生科研立项资助项目(1300-1314)
关键词 泛圈图 (3)-泛圈图 缠绕弦 pancyclie graphs (3)-pancyelie graphs interwined chords
  • 相关文献

参考文献21

  • 1J.A.Bondy,U.S.R.Murty. Graph Theory with Applications[M].New York:The Macmillan Press Ltd,1976.
  • 2E.Boros,Y.Caro,Z Furedi,R.Yuster. Covering non-uniform hypergraphs[J].Journal of Combinatorial Theory Series B,2001.270-284.
  • 3G.Chen,J.Lehel,M.S.Jacobson,W.E.Shreve. Note on graphs without repeated cycle lengths[J].Journal of Graph Theory,1998.11-15.
  • 4G.Exoo. date when the reference was last accessed[EB/OL].http://ginger.indstate.edu/ge/Graphs/PANCYCLIC/index.html,2013.
  • 5C.Lai. On the size of graphs with all cycle having distinct length[J].DISCRETE MATHEMATICS,1993.363-364.
  • 6C.Lai. A lower bound for the number of edges in a graph containing no two cycles of the same length[J].Electron J Combin,2001,(09):1-6.
  • 7C.Lai. Graphs without repeated cycle lengths[J].Australas J Combin,2003.101-105.
  • 8C.Lai,M.Liu. Some open problems on cycles[J].Journal of Combinatorial Mathematics and Combinatorial Computing,.
  • 9K.Markstrom. A note on uniquely pancyclic graphs[J].Australas J Combin,2009.105-110.
  • 10施永兵.关于唯一泛圈的图[J]科学通报,1985252-254.

二级参考文献20

  • 1Bondy J A,Murty U S R.Graph Theory with Applications.Macmillan Press,1976.
  • 2Shi Yongbing.On maximum cycle-distributed graphs.Discrete Math.,1988,71:57-71.
  • 3Shi Yongbing.The number of edges in a maximum cycle-distributed graph.Discrete Math.,1992,104:205-209.
  • 4Shi Yongbing.On Simple MCD graphs containing a subgraph homeomorphic to K4.Discrete Math.,1994,126:325-338.
  • 5Lai Chunhui.Graphs without repeated cycle lengths.Australasian J.of Combinatorics,2003,23:101-105.
  • 6Boros E,Caro Y,Füredi A and Yuster B.Covering non-uniforn hypergraphs.J.of Combinatorial Theory B,2001,82:270-284.
  • 7Shi Yongbing.Some theorems of uniquely pancyclic graphs.Discrete Math.,1986,59:167-180.
  • 8Shi Yongbing.The number of cycles in a Hamilton graph.Discrete Math.,1994,133:249-257.
  • 9Bondy J A,Lovasz L.Length of cycles in Halin graphs.J.of Graph Theory,1985,9(3):397-410.
  • 10Malkevitch J.Cycle lengths in polytopal graphs.Lecture Notes in Math.,1978,642:364-370.

共引文献5

同被引文献30

  • 1赖春晖.每个圈的长均不相等且不小于r的图的边数[J].漳州师院学报,1995,9(2):10-16. 被引量:1
  • 2施永兵.一类几乎唯一泛圈图[J].系统科学与数学,2006,26(4):433-439. 被引量:4
  • 3施永兵,徐莉,陈晓卿,王敏.关于几乎唯一泛圈图[J].数学进展,2006,35(5):563-569. 被引量:6
  • 4施永兵.关于唯一泛圈有向图.南京大学学报,1991,27:127-129.
  • 5张克民.某些图论问题的进展[J].Journal of Mathematical Research and Exposition,2007,27(3):563-576. 被引量:3
  • 6J.A. Bondy, U.S.R. Murty. Graph Theory with Applications[M]. New York: The Macmillan Press Ltd, 1976.
  • 7J. C. George, A. Marr, W. D. Wallis. Minimal pancyclic graphs[J]. J. Combin. Math. Combin. Comput., 2013, 86: 125-133.
  • 8X. Jia, Some extremal problems on cycle distributed graphs[J]. Congr. Numer., 1996, 121: 2t6-222.
  • 9C. Lai. On a problem of P. Erdos[J]. J. Zhangzhou Teachers College: Natural Science Edition, 1989, 1: 55-59.
  • 10C. Lai. On the size of graphs with all cycle having distinct length[J]. Discrete Math, 1993, 122: 363-364.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部