期刊文献+

一种基于相容粗糙集的特征选择算法研究

A Feature Selection Based on Tolerance Rough Set Theory
下载PDF
导出
摘要 粗糙集是一个去掉冗余特征的有效工具.由于大量真实数据的连续性,为了避免运用粗糙集方法所必须的离散化过程带来的信息丢失,将相容粗糙集应用于特征选择,并对粗糙集的边界域进行研究,提出了一种基于相容粗糙集的特征选择算法.在标准数据集上进行实验,结果表明本文提出的相容粗糙集特征选择方法是有效的. Rough set theory is an efficient mathematical tool for further reducing redundancy. The main limitation of traditional rough set theory is the lack of effective methods for dealing with real-valued data. However, most of data sets are always continuous. This has been addressed by employing discretization methods, which may restdt in information loss. This paper investigates one approach combining the information contained within the boundary region with features selection based on tolerance rough set theory. Compared with gene selection algorithm based on rough set theory, the proposed method is more effective.
作者 焦娜
出处 《闽南师范大学学报(自然科学版)》 2014年第1期50-55,共6页 Journal of Minnan Normal University:Natural Science
基金 国家社科基金青年项目(13CFX049) 上海高校青年教师培养资助计划(hdzf10008)
关键词 粗糙集 相容关系 特征选择 边界域 rough set theory tolerance relation feature selection boundary region
  • 相关文献

参考文献17

  • 1Pawlak Z. Rough sets[J].International Journal of Information Computer Science,1982,(05):341-356.
  • 2Dubois D,Prade H. Putting rough sets and fuzzy sets togetheR[J].Intelligent Decision Support,1992.203-232.
  • 3Banerjce M,Mitra S,Banka H. Evolutinary-mugh feature selection in gene expression Data[J].IEEE Transaction on Systems Man and Cyberneticd Part C:Application and Reviews,2007.622-632.
  • 4Jiao N,Miao D Q,Zhou J. Two novel feature selection methods based on decomposition and com position[J].Expert systems with application,2010,(12):7419-7426.
  • 5Jensen R,Shen Q. Tolerance-based and fuzzy-rough feature sdection[A].2007.877-882.
  • 6Liang J Y,Li R. Distance:A more comprehensible perspective for measures in rough set theory[J].Knowledge-based systems,2012.126-136.
  • 7Parthaláin N M,Shen Q. Exploring the boundary region of tolerance rough sets for feature selection[J].Pattern Recognition,2009.655-667.
  • 8Yao Y Y,Yao B X. Covering based rough set approximations[J].Information Sciences,2012.91-107.
  • 9苗夺谦,胡桂荣.知识约简的一种启发式算法[J].计算机研究与发展,1999,36(6):681-684. 被引量:507
  • 10Yang X B,Xie J,Song X N. Credible riles in incomplete decision system based on descriptorS[J].Knowledge-based systems,2009.8-17.

二级参考文献13

  • 1王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 2苗夺谦.Rough Set理论及其在机器学习中的应用研究(博士学位论文)[M].北京:中国科学院自动化研究所,1997..
  • 3苗夺谦.Rough Set理论及其在机器学习中的应用研究[博士学位论文].北京:中国科学院自动化研究所,1997..
  • 4王珏,J Comput Sci Technol,1998年,13卷,2期,189页
  • 5Miao Duoqian,IEEE ICIPS’97,1997年,1155页
  • 6苗夺谦,博士学位论文,1997年
  • 7陆汝钤,人工智能,1996年
  • 8Wong S K M,Bull Polish Acad Sci,1985年,33卷,693页
  • 9Wang Jue,J Comput Sci Technol,1998年,13卷,2期,189页
  • 10苗夺谦,博士论文,1997年

共引文献634

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部