期刊文献+

硅纳米管和纳米线场效应晶体管的模拟和比较 被引量:1

Simulation and Comparison of Silicon Nanotube and Nanowire Field Effect Transistors
下载PDF
导出
摘要 从硅纳米管和纳米线场效应晶体管的结构出发,先用Silvaco公司的TCAD仿真软件模拟出硅纳米管和纳米线的电势分布,然后根据电势分布依次求出两种器件的有效哈密顿量、非平衡格林函数及自能函数和电子浓度,再从电子浓度推导出电流密度与电压方程,并对其进行了分析比较。仿真结果显示,在沟道横截面积相同的情况下,纳米管器件的阈值电压比纳米线器件的高,且随管内外径之差的增加而减小。栅压比较大的情况下,在饱和区纳米管器件比纳米线器件能提供更大的驱动电流。两者在亚阈值区域表现相似,亚阈值摆幅分别为58和57 mV/dec。纳米管器件的饱和电压比纳米线器件的略小,在饱和区纳米管器件的电流更加平直,短沟道效应更不明显。 The TCAD simulation software of Silvaco Inc. was used to simulate the potential distri- bution of the silicon nanotube and nanowire field effect transistors based on their structures. Then the effective Hamiltonian, the amount of non-equilibrium Green's function, self energy function and electron concentration of the two devices were derived from the potential distribu- tion. Besides that the current density and voltage equation was calculated and analyzed based on the electron concentration. The simulation results of the gate-all-around nanowire FET (GAA NWFET) and nanotube architecture-based FET (NTFET) were compared. The results show that the threshold voltage of the NTFET is larger than that of the NWFET with the same cross- sectional area of the channel, while the threshold voltage of the former reduces when the diffe- rence of the inner diameter and the outer diameter increases. Compared with the NWFET, the NTFET can provide a larger driving current at the saturation region when the gate voltage is large enough. In the subthreshold region, the performance of the NTFET is similar to that of the NW- FET, and their subthreshold swings are 58 and 57 mV/dec, respectively. The saturation voltage of the nanotube devices is smaller than that of the nanowire devices. The current is straighter in the saturation region for nanotube devices, which indicates that its short channel effect
作者 朱兆旻 张存
出处 《微纳电子技术》 CAS 北大核心 2014年第4期209-213,235,共6页 Micronanoelectronic Technology
基金 专用集成电路与系统国家重点实验室开放研究课题基金资助项目(11KF003)
关键词 纳米管 纳米线 非平衡格林函数 金属氧化物半导体场效应晶体管(MOSFET) 器件建模 nanotube nanowire non-equilibrium Green's function metal- field effect transistor (MOSFET) device modeling IS unconsplcuous. oxide-semionductor
  • 相关文献

参考文献10

  • 1YONG K K. Short-channel effect in fully depleted SOl MOS- FETs [J]. IEEE Transactionson Electron Devices, 1989, 36 (2) : 399 - 402.
  • 2ZHU Z Z, YAN D W, XU G Q, et al. A continuous regional current-voltage model for short-channel double-gate MOSFETs [J]. Journal of Semiconductor Technology and Science, 2013, 13 (3) : 237- 244.
  • 3TAKATO H, SUNOUCHI K, OKABE N, et al. Impact of surrounding gate transistor (SGT) for ultra-high-density LSI's [J]. IEEE Transactions on Electron Devices, 1991, 38 (3) : 573 - 578.
  • 4AUTH C P, PLUMMER J D. Scaling theory for cylindrical, fully-depleted, surrounding-gate MOSFET's . IEEE Tran- sactions on Electron Devices, 1997, 18 (2) : 74 - 76.
  • 5SCHMIDT V, WlTTEMANN J, SENZ S, et al. Silicon nanowires: a review on aspects of their growth and their electrical properties . Adv Mater, 21)09, 21 (25/26) : 2681 - 2702.
  • 6HOSSAIN M F. High-performance silicon nanotube tunneling FET for ultralow-power logic applications [J]. IEEE Transac- tionson Electron, 2013, 60 (3): 1034- 1039.
  • 7HOSSAIN M F, HUSSAIN M M. Are nanotube architectures more advantageous than nanowire architectures for field effect transistors [J]. Nature, 2012, 6 (2):1-7.
  • 8ECONOMOU E N. Green's functions in quantum physics [M].3rd ed. Germany: Springer, 2006.
  • 9金烈侯,俞军,钱贤民.量子力学导读[M].杭州:浙江大学出版社,2008:20-34.
  • 10肖珺,程鸾,王恩科.在闭合时间路径温度场论中直接计算推迟和超前格林函数的费曼规则(英文)[J].高能物理与核物理,2004,28(7):690-695. 被引量:2

二级参考文献14

  • 1Schwinger J. J. Math. Phys., 1961, 2:407
  • 2Keldysh L V. Sov. Phys. JETP, 1965,20:1018
  • 3Chou K C et al. Phys. Rep., 1985,118:1
  • 4WANG E K, Heinz U. Phys. Lett., 1999, B471:208; Phys. Rev., 2003, D67:025022
  • 5WANG E K, Heinz U, Zhang X F. Phys. Rev., 1996, D53:5978
  • 6HOU D F, WANG E K, Heinz U. J. Phys., 1998,G24:1861
  • 7Aarts G, Smit J. Nucl. Phys., 1998, B 511:451
  • 8van Eijck M A, Kobes R, van Weert C G. Phys. Rev., 1994, D50:4097
  • 9Aurenche P, Becherrawy T. Nucl. Phys., 1992, B379:259
  • 10ZHANG H Z, WANG E K. High Energy Phys. and Nucl. Phys., 2002, 26(5):522 (in Chinese) (张汉中,王恩科. 高能物理与核物理,2002,26(5):522)

共引文献1

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部