摘要
辽河油田潜山经过四十余年的勘探,成果丰硕。在不断获得勘探重大发现,获取规模储量的同时,也不断完善了潜山勘探理论及相应的配套勘探技术系列。特别是近年来辽河油田提出了变质岩潜山内幕成藏勘探理论,并以此为指导在兴隆台~马圈子潜山带深层潜山和潜山深部获得重要突破,整体上报探明石油地质储量1.27亿吨,为辽河油田的增储稳产做出了巨大的贡献。辽河坳陷中央凸起潜山带具有较好的石油地质条件,钻探的赵古1已获重大发现,赵古2井显示存在变质岩内幕油藏,预示中央凸起变质岩潜山内幕油藏勘探拥有很好的前景。但变质岩潜山内幕结构、构造识别划分是关键点也是难点,加之中央凸起潜山内幕地震资料品质较差,这就需要在地震资料处理上有相应的配套处理方法,本文以中央潜山带为例针对变质岩潜山进行地震资料处理并且研究出配套处理方法。辽河坳陷中央潜山带地质情况复杂,潜山带及其两侧断裂附近横向速度突变,潜山内幕信噪比低,成像较差。为了理清断层位置,搞清潜山与东西两侧凹陷接触关系,提高潜山内幕成像质量,我们对辽河坳陷中央潜山带资料进行了叠前深度偏移处理和研究。本文首先介绍了克希霍夫叠前深度偏移的方法原理,进而阐述了建立精确速度-深度模型的思路和实施方法,并利用该速度模型进行了克希霍夫深度偏移和逆时偏移两种方法的成像运算,最后将叠前深度偏移成果与叠前时间偏移成果进行比较。深度偏移技术可以有效解决潜山及两侧断裂附近速度横向突变问题,使地下构造成像更加合理,同时信噪比和保真保幅方面也有所提高。
Geological conditions of the central buried hill in Liaohe depression is pretty complicated, and the lateral velocity of the formation that near the buried hill belt and the faults on both sides vary quickly, the buried hill and its interior has poor imaging and low signal--to--noise ratio. In order to clarify the fault location, contact the relationship of the buried hill and the depression on the both side; improve the imaging accuracy of the interior of the buried hill, we conducted the research and application of pre--stack depth migration processing using the seismic data of this area. This paper first introduces the principle of Kirchhoff pre- stack depth migration. Then we elaborate the idea and implementation methods to establish the accurate velocity - depth model, and use this model to carry out the imaging processing with two methods, that is the Kirchhoff depth migration and reverse time migration. Finally, we compare the result of the different methods. Depth migration technique can effectively resolve the problem of the lateral velocity quickly variation, and the imaging of the underground structure is more reasonable. At the same time, the PSDM improve the signal-to-noise ratio and preserve the relative amplitude for high resolution in some extent.
出处
《科技资讯》
2014年第4期121-124,共4页
Science & Technology Information
关键词
叠前深度偏移
中央潜山
速度建模
辽河坳陷
Pre-stack Depth Migration
Central Buried Hill Belt^Velocity Modeling~ Liaohe Depression