期刊文献+

一类在幼年时期传播的SIS传染病模型分析

Analysis of a kind of SIS epidemic model disseminated in childhood
下载PDF
导出
摘要 利用微分方程的稳定性理论与传染病模型的理论知识,研究了一类仅在幼年时期传播的SIS传染病模型,讨论了系统在平衡点处的稳定性态.并通过构造Liapunov函数,得到了系统在无病平衡点与地方病平衡点处全局渐近稳定的阈值. The stability and the epidemic model theory of the differential equation are used in this paper, and a kind of SIS epidemic model only disseminated in childhood is studied. The stable condition of system in equilibrium point is discussed, In addition, by constructing Liapunov function, the global asymptotic thresholds of disease flee and the endemic equilibrium are obtained.
作者 苏丹丹
出处 《西南民族大学学报(自然科学版)》 CAS 2014年第2期249-255,共7页 Journal of Southwest Minzu University(Natural Science Edition)
基金 国家自然科学基金重大项目(10990011)
关键词 传染病模型 平衡点 局部渐近稳定 全局渐近稳定 epidemic model equilibrium point local asymptotic stability global asymptotic stability
  • 相关文献

参考文献7

二级参考文献13

  • 1Walter G, Alello, Freedman H I. A time-delay of single species growth with stage structure[J]. Mathematical Bioscience, 1990, 101:139-153.
  • 2Walter G, Alello Freedman H I, Wu J. Analysis of a model representing stage-structured populations growth with stage-dependent time delay[J]. SIAM J Appl Math, 1992, 52(3):855-869.
  • 3Yang Kuang. Delay Differential Equation with Applications in Population Dynamics[M]. Boston: Academic Press Inc. 1993, 76-77.
  • 4Yanni Xiao, Lansun Chen. Analysis of a three species eco-epidemiological model[J]. J Math Anal Appl,2001, 258(2): 733-754.
  • 5Hethcote H W, van-den-Driessche P. Two SIS epidemiologic models with delays[J]. J Math Biol, 2000, 40(1):3-26.
  • 6Michael Y Li, Muldowney J S. Global stability for the SEIR model in epidemiology[J]. Math Biosci, 1995,125(2): 155-164.
  • 7Wang Wendi, Chen Lansun. A predator-prey system with stage-structure for predator[J]. Computers Math Applic, 1997, 33(8): 83-91.
  • 8Wolkowicz G S K, Xia Huaxing. Global asymptotic behavior of a Chemostat model with discrete delays[J].SIAM J Appl Math, 1997, 57(1):1019-1043.
  • 9Wang Wendi, Mulone G, Salemi F, et al. Permanence and stability of a stage-structured predator-prey model[J]. J Math Anal Appl, 2001, 262(2): 499-528.
  • 10胡志兴,王辉,管克英.具有非线性接触率和时滞的SIRS流行病模型[J].应用数学学报,1999,22(1):10-16. 被引量:13

共引文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部