期刊文献+

基于人工神经网络的供水管网压力管理探索 被引量:4

Exploration of ANN-Based Water Pressure Management for Water Supply Distribution Network
下载PDF
导出
摘要 供水管网的压力管理对实现按需供水、减少漏损和降低能耗具有重要的意义,实现压力管理的重要手段是对供水管网进行数学建模和数值仿真。但是,供水管网是非常复杂的大型非线性系统,按照传统的微观建模方法建立的供水管网模型往往精度不够,其数值求解效率也低,不适合基于这样的模型进行压力管理。该文提出了一种基于人工神经网络的供水管网压力管理的方法,即利用人工神经网络在供水管网的压力和流量之间建立非线性模型,并利用该非线性模型进行供水管网压力管理,而供水管网的压力管理则通过最优化问题的数值求解来实现。试验表明在不降低流量的情况下,供水的水压可降低1%。这对于减少供水管网的漏损、降低产销差率以及减少能耗具有重要的意义。 Pressure management on a water-supply network is significant to realize on-demand supply, to restrain the leakage, and to decrease energy consumption. Since the water-supply network is a complicate large scale nonlinear system, its numerical modeling, which is necessitated in the pressure management, cannot be accurately and efficiently fulfilled through the conventional microscopic methodology. A new ANN-based approach was proposed to model a water-supply network with 52 pressure probes and 32 flowrate probes. An acceptable nonlinear relationship between pressure measurements and flowrate measurements was established through a BP artificial neural network, which was utilized as the numerical model in the pressure management manifesting itself as a numerical optimization problem. The numerical test observes about 1% reduction in the pressure without flowrate violation. The novel approach and the numerical results presented in this paper are vital to the pressure management of water-supply networks.
作者 张晔明
出处 《净水技术》 CAS 2014年第2期98-104,共7页 Water Purification Technology
关键词 人工神经网络 供水管网 压力管理 artificial neural network water supply network pressure management
  • 相关文献

参考文献4

二级参考文献22

  • 1张剑湖,叶峰.人工神经网络的模型、特征及其发展方向[J].现代电子技术,2004,27(12):57-60. 被引量:14
  • 2蒋云彩,万顷波.MATLAB遗传算法工具箱(GAOT)的应用[J].江西电力职业技术学院学报,2004,17(3):42-44. 被引量:13
  • 3于玲,贾春强.Matlab遗传算法工具箱函数及应用实例[J].机械工程师,2004(11):27-28. 被引量:19
  • 4木林,马秀荣.人工神经网络的发展及应用[J].呼伦贝尔学院学报,2005,13(3):63-64. 被引量:5
  • 5李伟超,宋大猛,陈斌.基于遗传算法的人工神经网络[J].计算机工程与设计,2006,27(2):316-318. 被引量:69
  • 6Grayman W M, Clark R M, Males R M. Modeling distribution system water quality: dynamic approach [ J ]. Journal of Water Resources Planning and Management, 1988,114 ( 3 ) : 295 - 312.
  • 7Bowden G J, Nixon J B, Dandy G C, et al. Forecasting chlorine residuals in a water distribution system using a general regression neural network[ J ]. Mathematical and Computer Modelling, 2006,44 ( 5 - 6) :469 - 484.
  • 8韩立群.人工神经网络理论、设计及应用(第2版)[M].北京:化学工业出版社,2007.
  • 9Smaoui N, BuHamra S, Gabr M. A combination of Box-Jenkins analysis and neural networks to model and predict water consumption in Kuwait[J]. Proceedings of the International Joint Conference on Neural Network, 2002, 2: 1678-1683.
  • 10Shi J J. Reducing prediction error by transforming input data for neural networks[J]. Journal of Computing in Civil Engineering, 2000, 14(2): 109-116.

共引文献11

同被引文献10

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部