期刊文献+

Gd^(3+)掺杂纳米SnO_2锂离子电池负极材料的制备与电化学性能研究 被引量:4

Preparation and Electrochemical Performance of Gd^(3+) Doping SnO_2 Nanocrystals as Anode Material for Lithium Ion Batteries
下载PDF
导出
摘要 以SnCl4为锡源,Gd3+为掺杂离子,采用水热法制备出不同掺杂浓度的SnO2纳米晶.运用XRD、TEM、FT-IR以及充放电测试等手段对其结构、形貌、电化学性能进行了表征.结果表明所制备样品为四方晶系金红石型SnO2,Gd3+以替位方式掺入SnO2纳米晶中.当名义Gd3+掺杂浓度达到15%时,SnO2纳米颗粒转变为纳米棒.电化学性能表征发现SnO2纳米棒的首次充放电容量、循环稳定性以及库伦效率都要高于纳米颗粒,并且经过50次循环后SnO2纳米棒的比容量仍保持有370mAh/g.研究结果表明,由于掺杂的作用,调节了材料的形貌与尺寸,改善了SnO2纳米晶的电化学性能. Doped SnOz nanocrystals were prepared via a hydrothermaL method using tin tetrachLoride as tin precursor, Gda+ ions as doped ions. The XRDjTEM,FT-IR spectra results indicate that the as-synthe- sized samples are tetragonal rutile SnOz and Gd3+ ions exist as the formation of substituting Sn4+ ion. Doped SnO2 nanocrystals are converted to nanorods from quasi-spherical nanoparticles when the Gd+ doping con- centrations is beyond 15mol. The electrochemical properties of as-synthesized samples show that the ini- tial discharge and charge capacities, cycle performance and coulombic efficiency of Gd3+ doped SnOz nano- rods are better than those of SnO2 nanoparticles. Moreover, Gd3+ doped SnOz nanorods show a reversible capacity of 370 mAh/g after 50 cycles. The results demonstrate as Gd3+ ions are introduced, the shape and size of SnOz nanocystals can be changed and the electrochemical property be improved.
出处 《湘潭大学自然科学学报》 CAS 北大核心 2014年第1期26-32,共7页 Natural Science Journal of Xiangtan University
基金 国家自然科学基金项目(51272220) 湖南省教育厅项目(13C926)
关键词 二氧化锡 Gd3+掺杂 锂离子电池 电化学性能 SnOz Gds+ doping lithium-ion battery electrochemical property
  • 相关文献

参考文献2

二级参考文献15

  • 1Zheng Xialian,Huang Xinyou ,,Gao Chunhua.Study onferroelectric and dielectric properties of La-doped Ca- Bi4Ti4O15+based ceramics. Journal of Rare Earths . 2007
  • 2Zhang Shiyan,Xu Hui,Ni Jiansen,Wang Hailong,Bai Qin,Dong Yuanda.Effect of galliumaddition on mag- netic properties of Nd2Fe14B-αBased/Fe nanocomposite magnets. Journal of Rare Earths . 2007
  • 3Li Laifeng,Pan Xiaqing.Role of additives inSnO2 Based gas sensor materials. Chinese Journal of Ma- terials Research . 2002
  • 4Sandu I,Brousse T,Schleich D M,Danot M.SnO2 negative electrode for lithiumion cell :in situ Mossbauer investigation of chemical changes upon discharge. Journal of Solid State Chemistry . 2004
  • 5Qi Peng,Wang Jinfeng,Su Wenbin,Chen Hongcun,Zang Guozhong,Wang Chunming,Ming Baoquan.(Er ,Co , Nb)-doped SnO2varistor ceramics. Mate- rials Chemistry and Physics . 2005
  • 6Qi P,Wang J F,Su WB,Chen HC,Zang GZ,Wang C M,Ming B Q.(Yb , Co , Nb)-doped SnO2varistor ceramics. Journal of Materials Science . 2005
  • 7Tomokatsu Hayakawa,Masayuki Nogami.High lumi- nescence quantum efficiency of Eu3 +-doped SnO2-Si O2 glasses due to excitation energy transfer from nano-sized SnO2crystals. Science and Technology of Advanced Materials . 2005
  • 8Li Fen,Yan Bo,Zhang Jie,Jiang Anxi,Shao Chun- hong,Kong Xiangji,Wang Xin.Study on desulfuriza- tion efficiency and products of Ce-doped nanosized ZnO desulfurizer at ambient temperature. Journal of Rare Earths . 2007
  • 9Chen MH,Huang Z C,Wu G T.Synthesis and char- acterization of SnO-carbon nanotube composite as anode material for lithium-ion batteries. Materials Research Bulletin . 2003
  • 10G.X.Wang,Jun-Ho Ahn,M.J.Lindsay,et al.Graphite-tin composites as anode materials for lithium-ion batteries. Journal of Power Sources . 2001

共引文献6

同被引文献46

  • 1樊小勇,庄全超,许金梅,江宏宏,黄令,董全峰,孙世刚.锂离子电池薄膜锡负极材料的制备及容量衰减机理研究[J].化学学报,2007,65(2):165-169. 被引量:11
  • 2L1U J,LI Y,HUANG X. Direct growth of SnO2 nanorod array elec- trodes for lithium-ion batteries[J]. Journal of Materials Chemistry, 2009(13): 1859.
  • 3MAR Z, LIANGJ, WEI B Q. Study of electrochemical capacitors utilizing carbon nanotube electrodes[J]. Journal of Power Sources, 1999(1): 126-131.
  • 4LEI W X, PAN Y, ZHOU Y C, et al. CNTs - Cu composite layer enhanced Sn - Cu alloy as high performance anode materials for lithium-ion batteries[J]. RSC Advances, 2014,4(7) : 3233-3237.
  • 5TARASON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J], Nature,2001:359.
  • 6PROSINI P P, CENTO C, RUFOLONIC A, RONDINO F,et al. A lithium-ion battery based on LiFePO4 and silicon nanowires [J]. Solid State Ionics,2015 ,269:93-97.
  • 7THACKERAY M M,WOVERTON C,ISAACS E D. Electrical energy storage for transportation-approaching the limits of,and going beyond, lithium-ion batteries [J],Energy Environ Sci,2012(5):7854-7863.
  • 8SULAIMAN M A, HASAN H. Development of lithium-ion battery as energy storage for mobile power sources applications[J]. AIP Conf Proc,2009 ,1169:38-47.
  • 9GOODENOUGH J B,KIM Y. Challenges for rechargeable lithium batteries[J]. Chem Mater,2010,22(3):587-603.
  • 10ETACHERI V,MAROM R5ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries: a review[J]. Energy Environ Sci,2011 ,4(9):3243-3262.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部