期刊文献+

合作型协同演化算法研究进展 被引量:3

Research overview of cooperative coevolutionary algorithms
下载PDF
导出
摘要 合作型协同演化算法是近年来计算智能研究的热点。它运用生物协同演化的思想,通过构建两个或者多个种群,建立它们之间的合作关系。两个或多个种群通过相互合作来提高各自的性能,适应复杂系统的动态演化环境以及大规模演化环境,从而达到种群优化的目的。主要介绍了合作型协同演化算法的研究状况以及国内外研究进展,详细介绍了它的基本结构及对应的研究、基本算法及一些新兴算法,同时介绍了一些在现实生活中的应用,展望了合作型协同演化算法的发展前景。 Cooperative coevolution algorithm is a hot research topic in computational intelligence in recent years. Inspired by the principle of natural selection, cooperative coevolution algorithm constructs two or more groups and establishes the cooperative relationship among the groups. Two or more groups cooperates together to improve their performance, be adapted to dynamic evolutionary circumstance of complicated systems and large-scale evolutionary circumstance, thus achieving the goal of population optimization. The research state and advances of cooperative coevolution algorithms in domestic and foreign are discussed and surveyed. The paper introduces the three main aspects of cooperative coevolution algo- rithm: basic structure and corresponding studies, basic and improved algorithms, and some applications in the real life. Finally, research prospects are indicated.
作者 张凯波 李斌
出处 《计算机工程与科学》 CSCD 北大核心 2014年第4期674-684,共11页 Computer Engineering & Science
基金 国家自然科学基金资助项目(61071024 U0835002) 教育部基本科研业务费专项资金资助项目
关键词 合作型协同演化算法 问题分解 子空间相关性 cooperative coevolution algorithm problem decomposition subspace correlation
  • 相关文献

参考文献1

二级参考文献5

共引文献4

同被引文献119

  • 1巩敦卫,郝国生,周勇,孙晓燕.分层交互式进化计算及其应用[J].控制与决策,2004,19(10):1117-1120. 被引量:15
  • 2孙晓燕,巩敦卫.变种群规模合作型协同进化遗传算法及其在优化中的应用[J].控制与决策,2004,19(12):1437-1440. 被引量:7
  • 3刘漫丹.文化基因算法(Memetic Algorithm)研究进展[J].自动化技术与应用,2007,26(11):1-4. 被引量:37
  • 4Wiegand R P. An analysis of cooperative coevolutionary algorithms[D]. Faiffax: Department of Computer Science, George Mason University, 2003.
  • 5Canttl-Paz E. A survey of parallel genetic algorithms[J]. Calculateurs Paralleies, Reseaux et Systems Repartis, 1998, 10(2): 141-171.
  • 6Alba E, Tomassini M. Parallelism and evolutionary algorithms[J]. IEEE Trans on Evolutionary Computation, 2002. 6(5): 443-462.
  • 7Rosin C D, Belew R K. New methods for competitive coevolution[J]. Evolutionary Computation, 1997, 5(1): 1- 29.
  • 8Hillis W D. Co-evolving parasites improve simulated evolution as an optimization procedure[J]. Physica D: Nonlinear Phenomena, 1990, 42(1): 228-234.
  • 9Aitkenhead M J. A co.-evolving decision tree classification method[J]. Expert Systems with Applications, 2008, 34(1): 18-25.
  • 10Paredis J. Co-evolutionary constraint satisfaction[C]. Parallel Problem Solving from Nature PPSN III. Berlin: Springer, 1994: 46-55.

引证文献3

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部