摘要
在Farsiu提出的双边总变分正则化方法中,尺度加权系数和正则化参数为定值,在边缘、纹理区域,重建图像效果不理想。针对这个问题,提出了一种自适应加权正则化函数和正则化参数的重建算法,该方法利用图像局部结构信息控制权函数形状、带宽和正则化参数,使这些参数根据图像局部结构信息自适应地调整。对所提出的算法进行了仿真实验,实验结果表明,与传统的总变分重建方法相比较,该算法能更好地重建图像的纹理细节,重建图像的对比度高。
In bilateral total variation regularization method (BTV) , which was proposed by Farsiu, the scale weight is a constant, so the image reconstruction effect is not ideal for texture and edge region. In order to solve this problem, an adaptive weighted regularization function and regularization parameter algorithm is proposed in this paper. In the proposed algorithm, the local structure information of image is used to control the shape, bandwidth of the weighted function and the regularization parameter. The experimental results show that the proposed algorithm, compared with BTV, can retain the image details better and improve the image contrast.
出处
《红外技术》
CSCD
北大核心
2014年第4期290-293,共4页
Infrared Technology
基金
国防科技重点实验室基金项目
关键词
超分辨率重建
自适应加权
总变分
正则化参数
super resolution reconstruction, adaptive weight, total variation, regularization parameter