期刊文献+

自适应加权的总变分正则化图像超分辨率重建 被引量:3

A Super-Resolution Algorithm Based on Adaptive Weighted Total Variation
下载PDF
导出
摘要 在Farsiu提出的双边总变分正则化方法中,尺度加权系数和正则化参数为定值,在边缘、纹理区域,重建图像效果不理想。针对这个问题,提出了一种自适应加权正则化函数和正则化参数的重建算法,该方法利用图像局部结构信息控制权函数形状、带宽和正则化参数,使这些参数根据图像局部结构信息自适应地调整。对所提出的算法进行了仿真实验,实验结果表明,与传统的总变分重建方法相比较,该算法能更好地重建图像的纹理细节,重建图像的对比度高。 In bilateral total variation regularization method (BTV) , which was proposed by Farsiu, the scale weight is a constant, so the image reconstruction effect is not ideal for texture and edge region. In order to solve this problem, an adaptive weighted regularization function and regularization parameter algorithm is proposed in this paper. In the proposed algorithm, the local structure information of image is used to control the shape, bandwidth of the weighted function and the regularization parameter. The experimental results show that the proposed algorithm, compared with BTV, can retain the image details better and improve the image contrast.
出处 《红外技术》 CSCD 北大核心 2014年第4期290-293,共4页 Infrared Technology
基金 国防科技重点实验室基金项目
关键词 超分辨率重建 自适应加权 总变分 正则化参数 super resolution reconstruction, adaptive weight, total variation, regularization parameter
  • 相关文献

参考文献9

  • 1Park C S, Park K M, Kang G M. Super-resolution image reconstruction: a technical overview[J]. IEEE Signal Processing Magazine, 2003, 20(3): 21-36.
  • 2Elad M, Feuer A. Restoration of a single super-resolution image from several blurred, noisy, and undersampled measured images[J]. IEEE Transactions on Image Processing, 1997, 6( 12): 1646-1658.
  • 3江静,张雪松.图像超分辨率重建算法综述[J].红外技术,2012,34(1):24-30. 被引量:31
  • 4Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Ph3wical Review D, 1992, 60:259-268.
  • 5Farsiu S, Robinson M D. Fast and robust multi-frame super resolution[J]. IEEE Transac'tions on Image Processing, 2004, 13(10)1327-1344.
  • 6Takeda H, Farsiu S, Milantbr P. Kernel regression for image processing and reconstruction[J]. IEEE Transactions on Image Processing, 2007, 16(2): 349-366.
  • 7韩玉兵.基于正则化处理的超分辨率重建[D].南京:东南大学,2007.
  • 8Kang M G, Katesaggelos A K. General choice of the regularization functional in regularized image restoration[J]. IEEE Transactions on Image Processing, 1995, 4(5): 594-602.
  • 9Lucchese L, Cortelazzo G M. A noise-robust frequency domain technique for estimating planar roto-translations[J]. IEEE Transactions on Signal Processing, 2000, 48(6): 1769-1786.

二级参考文献37

  • 1Tsai R Y, Huang T S. Multiframe image restoration and registration, in Advances ill Computer Vision and Image Processing: JAI Press Inc., 1984: 317-339.
  • 2Kim S P, Bose N K, Valenzuela H M. Recursive reconstruction of high resolution image from noisy undersampled multiframes[J]. IEEE Trans. Acoust. Speech, Signal Processing, 1990, 38:1013-1027.
  • 3Bose N K, Kim H C, Valenzuela H M. Reeursive implementation of total least squares algorithm fbr image reconstruction from noisy, undersampled multiframes. Acoustics, Speech and Signal Processing, Minneapolis[C]//IEEE 1993, pp. 269-272.
  • 4Rhee S H, Kang M G. Discrete cosine transform based regularized high-resolution image reconstruction algorithm. Opt. Eng., 1999, 38(8): 1348-1356.
  • 5John M. Wiltse, John L. Miller. Imagery improvements in staring infrared imagers by employing subpixel microscan[J]. Optical Engineering, 2005,44(5):056401-056409.
  • 6Kim S P, Bose N K. Reconstruction of 2-d bandlimited discrete signals from nonunitbrm samples. Radar and Signal Processing[J]. IEE Proceedings Part F, 1990, 137(3):197-204.
  • 7Katsaggelos A K. Digital image restoration. New York: Springer-Verlag, 1991.
  • 8Schulz R R, Stevenson R L. Extraction of high-resolution frames from video sequences[J]. 1EEE Trans. hnage Processing, 1996, 5(6): 996-1011.
  • 9Hardie R C, Barnard K J, Armstrong E E. Joint map registration and high-resolution image estimation using a sequence of undersampled images[J]. IEEE Transactions on Image Processing, 1997, 6(12): 1621-1633.
  • 10Tom B C, Katsaggelos A K. Reconstruction of a high-resolution image by simultaneous registration, restoration, and interpolation of low-resolution images, hnage Processing. Washington, DC[C]// IEEE 1995, 539-542.

共引文献30

同被引文献17

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部