期刊文献+

基于蠕滑理论的钢轨临界平面疲劳参量仿真 被引量:5

Simulation of Fatigue Parameters of Rail Critical Plane Based on Wheel-rail Creep Theory
下载PDF
导出
摘要 为考虑轮轨蠕滑对钢轨疲劳裂纹萌生的影响,通过车辆-轨道多体动力学模型和钢轨有限元模型,分析不同线路条件下的轮轨接触压力和切向力对钢轨轨头(包括轨距角)的应力-应变响应,定量研究钢轨滚动接触疲劳裂纹萌生疲劳参量 FP中的正应力-应变部分与剪应力-应变部分对裂纹萌生的影响,并比较导向轮和非导向轮对 FP的影响。仿真结果表明,考虑轮轨蠕滑的情况下,钢轨轨头绝大部分节点处于三向受压状态,疲劳参量 FP主要是由剪应力-应变部分作用产生,对裂纹萌生预测应采用剪切型裂纹公式;FPmax所在的临界平面在钢轨横断面的投影线与横向水平轴呈105°~140°夹角,在水平面的投影线与纵向水平轴呈20°~50°夹角;导向轮作用下的 FPmax要远远大于非导向轮作用下的 FPmax 。 To consider the influence of the wheel-rail creep on the initiation life of rail rolling contact fatigue (RCF) cracks ,the vehicle-track multi-body dynamics models and rail FEM models were built to analyze the stress-strain responses of rail heads and gauge corners in w heel-rail contact pressures and tangential forces under different track conditions. FP ,the fatigue parameter of rail rolling contact fatigue crack initiation ,was analyzed to quantify the influence of its normal and shear stress-strain portions on crack initiation. A detailed comparison of FP was taken between the leading and trailing wheels over the rail. The simulation results show as follow s :Considering the w heel-rail creep ,the vast majority of nodes in rail heads are being under three-di-mensional compression ,and FP is generated by action of the shear stress-strain portion ;the shear crack formula should be chosen to predict the RCF life ;the projection line of the critical plane of the value of FPmax on the rail cross-section takes an orientation about 105°~140° with respect to the lateral direction of the rail ;the projec-tion line of the same plane on the level plane takes an orientation about 20°~50° with respect to the longitudinal direction of the rail ;FPmax caused by the leading w heel is much larger than that by the trailing w heel.
出处 《铁道学报》 EI CAS CSCD 北大核心 2014年第4期65-70,共6页 Journal of the China Railway Society
基金 国家科技支撑计划(2013BAG20B01) 国家自然科学基金(50908179) 上海市自然科学基金(11ZR1439200)
关键词 临界平面法疲劳参量 轮轨蠕滑理论 滚动接触疲劳 导向轮 有限元 RCF (rolling contact fatigue ) FEM(finite ELEMENT method) fatigue parameter of critical plane w heel-rail creep theory leading wheel
  • 相关文献

参考文献13

  • 1RINGSBERG J W, LOO-MORREY M, JOSEFSON B L, et al. Prediction of Fatigue Crack Initiation for Rolling Contact Fatigue[J]. International Journal of Fatigue, 2000, 22(3) : 205-215.
  • 2KAPOOR A. A Reevaluation of the Life to Rupture of Ductile Metals by Cyclic Plastic Strain [J]. Fatigue Fracture of Engineering Materials & Structures, 1994, 17 (2) : 201-219.
  • 3金学松,张继业,温泽峰,李芾.轮轨滚动接触疲劳现象分析[J].机械强度,2002,24(2):250-257. 被引量:53
  • 4LEWIS R, OLOFSSON U. Wheel/Rail Interface Hand- book[M]. Cambridge: Woodhead Publishing Limited and CRC Press LLC, 2009: 229.
  • 5JIANG Y Y, SEHITOGLU H. A Model for Rolling Con- tact Failure[J]. Wear, 1999, 224(1) : 38-49.
  • 6AKAMA M. Development of Finite Element Model for Analysis of Rolling Contact Fatigue Cracks in Wheel/Rail Systems[J]. QR of RTRI, 2007, 48(1): 8-15.
  • 7WANG J X, XU Y D, LIAN S L, et al. Probabilistic Pre- diction Model for Initiation of RCF Cracks in Heavy-haul Railway[J]. International Journal of Fatigue, 2011, 33 (2) : 212-216.
  • 8王建西,许玉德,王志臣.影响钢轨疲劳裂纹萌生寿命的主要因素分析[J].同济大学学报(自然科学版),2009,37(7):914-918. 被引量:4
  • 9王建西,许玉德,练松良,方永明.随机轮轨力作用下钢轨滚动接触疲劳裂纹萌生寿命预测仿真[J].铁道学报,2010,32(3):66-70. 被引量:17
  • 10PUN C L, YAN W Y, MUTTON P J. Stress Analysis in Rail Head of High Strength Rail Steel in Heavy Haul Op- erations[C]//9th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems (CM2012). Chengdu: Southwest Jiaotong University Printing House, 2012:516-522.

二级参考文献23

  • 1李夕兵,左宇军,马春德.动静组合加载下岩石破坏的应变能密度准则及突变理论分析[J].岩石力学与工程学报,2005,24(16):2814-2824. 被引量:48
  • 2王志平.重载快速大运量区段P60钢轨鱼鳞伤和剥离掉块的研究[J].华东交通大学学报,2005,22(4):1-6. 被引量:6
  • 3Ringsberg J W,Loo Morrey M,Josefson B L,et al.Prediction of fatigue crack initiation for rolling contact fatigue[J].International Journal of Fatigue,2000,22(3):205.
  • 4Kapoor K.A re-evaluation of the life to rupture of ductile metals by cyclic plastic strain[J].Fatigue & Fracture of Engineering Materials & Structures,1994,17(2):201.
  • 5Dunne F,Petrinic N.Introduction to computational plasticity[M].New York:Oxford University Press,2005.
  • 6JIANG Yanyao,Sehitoglu H.A model for rolling contact failure[J].Wear,1999,224(1):38.
  • 7JIANG Yanyao.A fatigue criterion for gengeral multiaxial loading[J].Fatigue & Fracture of Engineering Materials & Structures,2000,23(1):19.
  • 8KANG Guozheng,GAO Qing.Uniaxial and non-proportionally multiaxial ratchetting of U71Mn rail steel:experiments and simulations[J].Mechanics of Materials,2002,34(12):809.
  • 9Ringsberg J W, Loo-Morrey M, Josefson B L, et al. Prediction of Fatigue Crack Initiation for Rolling Contact Fatigue[J].International Journal of Fatigue, 2000, 22 (3):205-215.
  • 10Kapoor K. A Re-evaluation of the Life to Rupture of Ductile Metals by Cyclic Plastic Strain[J]. Fatigue & Fracture of Engineering Materials & Structures, 1994, 17(2):201- 219.

共引文献65

同被引文献20

引证文献5

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部