期刊文献+

Low Cycle Fatigue Behavior and Deformation Mechanism of TWIP Steel 被引量:1

Low Cycle Fatigue Behavior and Deformation Mechanism of TWIP Steel
原文传递
导出
摘要 Low cycle fatigue behavior of TWIP (twinning induced plasticity) steel was investigated in axial symmetric tension-compression cyclic loading pattern. Fracture surfaces and microstructures were examined by optical, scanning electron and transmission electron microscopes. It was found that the fatigue life at the strain amplitude of 0.4 % is up to 15 000 cycles, which is much longer than TRIP780 and HSLAS00 steels. The strain hardening and softening features are significant until the strain amplitude comes to 1.25 ~. Persistent slip bands and tiny mechanical twinning layers were observed after fatigue deformation. Deformation mechanism of TWIP steel at low cycle fatigue process is not only twinning, but a complex of both twinning and persistent slip bands. Low cycle fatigue behavior of TWIP (twinning induced plasticity) steel was investigated in axial symmetric tension-compression cyclic loading pattern. Fracture surfaces and microstructures were examined by optical, scanning electron and transmission electron microscopes. It was found that the fatigue life at the strain amplitude of 0.4 % is up to 15 000 cycles, which is much longer than TRIP780 and HSLAS00 steels. The strain hardening and softening features are significant until the strain amplitude comes to 1.25 ~. Persistent slip bands and tiny mechanical twinning layers were observed after fatigue deformation. Deformation mechanism of TWIP steel at low cycle fatigue process is not only twinning, but a complex of both twinning and persistent slip bands.
出处 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2014年第3期352-358,共7页
基金 Sponsored by Fundamental Research Funds for Central Universities of China(FRF-TP-11-005B)
关键词 TWIP steel low cycle fatigue fatigue property persistent slip band TWIP steel low cycle fatigue fatigue property persistent slip band
  • 相关文献

参考文献15

  • 1Z.L. Mi, H.T. Jing, H.T. Jiang, D. Tang, Y.X. Wu, J Univ. Sci. Tech. Beijing 35 (2013) :465 -473.
  • 2G. Frommeyer, U. Brtix, P. Neumann, ISIJ Int. 43 (2003) 438-446.
  • 3S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Mater. Sci. Eng. A 387 (2004) 158-162.
  • 4Y.Q.I.i, L.C. Zhu, Y. Liu, Y.J. Wei, Y.X. Wu, D. Tang, Z. L. Mi, J. Mech. Phys. Solids 61 (2013) 2588-2604.
  • 5T. Ueji, K. Harada, N. Tsuchida, K. Kunishige, Mater. Sci. Forum 561 565 (2007) 107-110.
  • 6Z. L. Mi, L. Yang, Z. C. Li, H.T. Jiang, Trans. China Weld. Inst. 34 (2013) No. 5, 9-12.
  • 7K. Chung, K. Ahn, D.H. Yoo, K.H. Chung, M.H. Seo, S. H. Park, Int. J. Plast. 27 (2011) 52 -81.
  • 8L.T. Rohertson, T.B. Hilditeh, P.D. Hodgson, Int. J. Fa- tigue 30 (2008) 587-594.
  • 9T. Nienclorf, C. Lotze, D. Canadinc, A. Frehn, H.J. Maier, Mater. Sci. Eng. A 499 (2009) 518-524.
  • 10A.S. Hamada, L.P. Karjalainen, J. Puustinen, Mater. Sci. Eng. A 517 (2009) 68-77.

同被引文献5

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部