期刊文献+

低信噪比下采用感知语谱结构边界参数的语音端点检测算法 被引量:8

Speech endpoint detection in low-SNRs environment based on perception spectrogram structure boundary parameter
下载PDF
导出
摘要 提出了一种采用感知语谱结构边界参数(PSSB)的语音端点检测算法,用于在低信噪比环境下的语音信号预处理。在对含噪语音进行基于听觉感知特性的语音增强之后,针对语音信号的连续分布特性与残留噪声的随机分布特性之间的不同点,对增强后语音的时-频语谱进行二维增强,从而进一步突出连续分布的纯净语音的语谱结构。通过对增强后语音语谱结构的二维边界检测,提出PSSB参数,并用于端点检测。实验结果表明,在白噪声-10 dB到10 dB的各种信噪比环境下,采用PSSB参数的端点检测算法,相对于其它端点检测算法,更有效地检测出语音的端点。在-10 dB的极低信噪比下,提出的方法仍然有75.2%的正确率。采用PSSB参数的端点检测算法,更适合于低信噪比白噪声环境下的语音端点检测。 A Perception Spectrogram Structure Boundary (PSSB) parameter is proposed for speech endpoint detection as a preprocess of speech signal. A hearing perception speech enhancement is made as a first step, then a two-dimensional enhancement is performed upon the speech spectrogram according to the difference between the continuous distribution characteristic of pure speech and the random distribution characteristic of noise, in order to emphasize the continuous spectrogram structure of pure speech. PSSB parameter is proposed based on the two-dimensional boundary detection of the enhanced speech spectrogram structure. Experimental results show that, in a variety of SNR environments from -10 dB to 10 dB, the algorithm proposed in this paper can achieve higher accuracy in comparison to the extant endpoint detection algorithms. With our algorithm, accuracy of 75.2% can be reached even in the extreme low SNR at -10 dB. The endpoint detection algorithm using PSSB, is suitable for speech endpoint detection in low-SNRs environment with white noise.
出处 《声学学报》 EI CSCD 北大核心 2014年第3期392-399,共8页 Acta Acustica
基金 国家自然科学基金(61071215 61271359 61372146) 苏州市科技发展计划(应用基础研究)(SYG201033)资助
关键词 语音信号预处理 端点检测算法 极低信噪比 感知特性 边界检测 谱结构 语音端点检测 噪声环境 Audition Signal detection Signal to noise ratio Spectrographs Speech enhancement Two dimensional White noise
  • 相关文献

参考文献19

  • 1Shen J, Hung J, Lee L. Robust entropy-based endpoint de- tection for speech recognition in noisy environments. In: Proc IEEE ICSLP, 1998:232-235.
  • 2Junqua J C, Mak B, Reaves B. A robust algorithm for word boundary detection in the presence of noise. IEEE Trans. On Speech and Audio Processing, 1994; 2(3): 406-412.
  • 3Bou-Ghazale S E, Assaleh K. A robust endpoint detection of speech for noisy environments with application to auto- matic speech recognition. In: Proc. IEEE ICASSP, 2002; 4(2): 3808--3811.
  • 4Shafran I, Rose R. Robust speech detection and segmen- tation for real-time ASR applications. Acoustics, Speech, and Signal Processing, Proceedings, 2003(1): 6-10.
  • 5Gu Lingyun, Zahorian S A. A new robust algorithm for iso- lated endpoint detection. In: Proc. IEEE ICASSP, 2002; 4:4161-4164.
  • 6Gin-Der W, Chin-Teng L. Word boundary detection with mel-scMe frequency bank in noisy environment. IEEE Transactions on Speech and Audio Processing, 2000; 8: 541- 544.
  • 7Ganapathiraju Aet al. Comparison of energy-based end- point detectors for speech signal processing. In: Proc. 1EEE Publications, 1996:500- 503.
  • 8陈振标,徐波.基于子带能量特征的最优化语音端点检测算法研究[J].声学学报,2005,30(2):171-176. 被引量:22
  • 9Zhang Xueying et al. A speech endpoint detection method based on wavelet coefficient variance and sub-band ampli- tude variance. In: Proc. 1EEE ICICIC, 2006:105- 109.
  • 10Wu Bingfei, Wang Kun-Ching. Robust endpoint detection algorithm based on the adaptive band-partitioning spectral entropy in adverse environments. IEEE Transactions on Speech and Audio Processing, 2005; 13(5): 762-775.

二级参考文献12

  • 1果永振,何遵文.一种多特征语音端点检测算法及实现[J].通信技术,2003,36(1):8-10. 被引量:8
  • 2Wu G D, Lin C T. Word boundary detection with mel-scale frequency bank in noisy environment. IEEE Transactions on Speech and Audio Processing, 2000; 8(5): 541-554.
  • 3Ramalingam Hariharan et al. Robust end of utterance detection for real-time speech recognition applications. In Proc. ICASSP'2001.
  • 4CHEN Shaoyan et al. A robust method based on likelihood estimation for speech signal detection. International Symposium on Chinese Spoken Language Processing, 2000.
  • 5HUANG Liangsheng et al. A novel approach to robust speech endpoint detection in car environments. International Conference on Acoustics Speech and Signal Processing, 2000.
  • 6Johan de Veth e~ al. Comparison of channel normalization techniques for automatic speech recognition over the phone. Proceedings of the Fourth International Conference on Spoken Language Processing (ICSLP96), 1996; 4:2332-2335.
  • 7Li Qi et al. A Robust real-time endpoint detector with energy normalization for ASR in adverse environments. In Proc. ICASSP'2001, Salt Lake City, 2001.
  • 8Canny J. A computational approach to edge detection.IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986; 8:679-698.
  • 9Petrou M et al. Optimal edge detectors for ramp edge.IEEE Trans on Pattern Analysis and Machine Intelligence, 1991; 13:483-491.
  • 10胡光锐,韦晓东.基于倒谱特征的带噪语音端点检测[J].电子学报,2000,28(10):95-97. 被引量:70

共引文献21

同被引文献51

引证文献8

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部