期刊文献+

微尺度碳粒的激光诱导辐射非傅里叶现象分析 被引量:4

Analysis of Non-Fourier Effect During Laser-Induced Radiation of Micro Scale Carbon Particulates
原文传递
导出
摘要 采用热松弛时间表征微纳米含碳粒子受热瞬间热扰动和热响应存在的时间迟滞,同时结合Kn数判断受热粒子所处的流动区域修正空气导热系数,建立亚微米碳粒的单相延迟双曲型瞬态激光诱导辐射传热传质模型,分析碳粒子经高能脉冲激光照射前后其温度与激光诱导辐射光谱强度的时域变化特征。重点讨论了热松弛时间与激光能量等参数对不同粒径尺度的碳粒激光诱导辐射光谱信号的影响。结果表明,热松弛时间值越大,入射激光能量越高,粒径越小,受热颗粒的激光诱导辐射光谱信号振荡幅度越强,非傅里叶效应越显著,这为采用激光诱导辐射技术进行高温环境亚微米量级含碳微粒的定量测量研究提供理论依据。 A numerical model of time-resolved laser-induced radiation model of micro-scale carbon particulates based on non-Fourier heat diffusion is developed, through adapting thermal relaxation time to present time lag between thermal disturbance and response inside particles, as well as correcting air Conductivity coefficient via K,, number to judge flux region of heated particles. Theoretical temperature and radiation signal profiles of heated carbon particulate are presented, in order to discuss the effect of radiation signals of micro-scale particles on different thermal relaxations and laser fluences. The results show non-Fourier phenomenon becomes obvious in radiation signals, in the case of high thermal relaxation, high laser fluence, and small particles. The discussion of the numerical results provides guidance for laser-induced radiation technique measuring the concentration and size of micro-scale carbon particulates in high temperature environment.
出处 《中国激光》 EI CAS CSCD 北大核心 2014年第4期189-195,共7页 Chinese Journal of Lasers
基金 国家自然科学基金(51206144) 国家重点基础研究发展计划(2009CB219802) 高等学校学科创新引智计划(B08026) 浙江省自然科学基金(LY12E06003)
关键词 激光技术 激光诱导辐射 微尺度 碳粒 热松弛时间 非傅里叶效应 laser technique laser-induced radiation micro scale carbon particulate thermal relaxation time non-Fourier effect
  • 相关文献

参考文献8

二级参考文献74

共引文献103

同被引文献66

  • 1Friedrich B, Herschbach D R. Spatial orientation of molecules in strong electric fields and evidence for pendular states[J]. Nature, 1991, 353(6343): 412-414.
  • 2Durand A, Loison J C, Vigue J. Spectroscopy of pendular states: Determination of the electric dipole moment of ICI in the XI~~ (v"=O) and A31I~ (v'=6-29) levels[J]. J Chem Phys, 1997, 106(2): 477-484.
  • 3Kanya R, Ohshima Y. Determination of dipole moment change on the electronic excitation of isolated Coumarin 153 by pendular-state spectroscopy[J]. Chem Phys Lett, 2003, 370(1-2): 211-217.
  • 4Block P A, Bohae E J, Miller R E. Spectroscopy of pendular states: The use of molecular complexes in achieving orientation[J]. Phys Rev Lett, 1992, 68(9): 1303-1306.
  • 5Rost J M, Griffin J C, Friedrieh B, et al.. Pendular states and spectra of oriented linear molecules[J]. Phy Rev Lett, 1992, 68(9): 1299- 1302.
  • 6Friedrich B, Rubahn H G, Sathyamurthy N. State-resolved scattering of molecules in pendular states: ICI+Ar[J]. Phys Rev Lett, 1992, 69(17): 2487-2490.
  • 7Yang X, Kerstel E R T, Scoles G, et al.. High resolution infrared molecular beam spectroscopy of cyanoacetylene clusters[J]. J Chem Pbys, 1995, 103(20): 8828-8839.
  • 8Rudic S, Merritty J M, Miller R E. Study of the CH3-H20 radical complex stabilized in helium nanodroplets[J]. Phys Chem Chem Plays, 2009, 11(26): 5345-5352.
  • 9Shvartsburg A A, Noskov S Y, Purves R W, et al.. Pendular proteins in gases and new avenues for characterization of macromolecules by ion mobility spectrometry[J]. PNAS, 2009, 106(16): 6495-6500.
  • 10Wei Q, Kais S, Friedrich B, et al.. Entanglement of polar symmetric top molecules as candidate qubits[J]. J Chem Phys, 2011, 135(15): 154102.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部