期刊文献+

Superresolution imaging of DNA tetrahedral nanostructures in cells by STED method with continuous wave lasers 被引量:1

Superresolution imaging of DNA tetrahedral nanostructures in cells by STED method with continuous wave lasers
原文传递
导出
摘要 DNA tetrahedral nanostructures are considered to be uew nanocarriers because they can be precisely controlled and hold excellent penetration ability to the cellular membrane. Although the DNA tetrahedral nanostructure is extensively studied in biology and medicine, its behavior in the cells with nanoscale resolution is not understood clearly. In this letter, we demonstrate superrcsolution fluorescence imaging of the distribution of DNA tetrahedral nanostructures in the cell with a simulated emission depletion (STED) microscope, which is built based on a conventional eonfocal microscope and can t)rovide a resolution of 70 nm. DNA tetrahedral nanostructures are considered to be uew nanocarriers because they can be precisely controlled and hold excellent penetration ability to the cellular membrane. Although the DNA tetrahedral nanostructure is extensively studied in biology and medicine, its behavior in the cells with nanoscale resolution is not understood clearly. In this letter, we demonstrate superrcsolution fluorescence imaging of the distribution of DNA tetrahedral nanostructures in the cell with a simulated emission depletion (STED) microscope, which is built based on a conventional eonfocal microscope and can t)rovide a resolution of 70 nm.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2014年第4期35-38,共4页 中国光学快报(英文版)
基金 supported by the National Natural Science Foundation of China under Grand Nos.61008056,21227804,61078016,and 61378062)
  • 相关文献

参考文献21

  • 1A. V. Pinheiro, D. Han, W. M. Shill, and H. Yam Nature Nano. 6. 763 (2011).
  • 2S. Ko, H. Liu, Y. Chen, and C. Mao, Biomacromolecules 9, 3039 (2008).
  • 3A. S. Walsh, H. Yin, C. M. Erben, M. J. A. Wood, and A. J. Turberfield, ACS Nano 5, 5427 (2011).
  • 4W. T. A1-Jamal and K. Kostarelos, Acc. Chem. Res. 44, 1094 (2011).
  • 5S. Modi, M. G. Swetha, D. Goswami, G. D. Gupta, S. Mayor, and Y. Krishnan, Nature Nano. 4, 325 (2009).
  • 6D. A. Giljohann, D. S. Seferos, A. E. Prigodich, P. C. Patel, and C. A. Mirkin, J. Am. Chem. Soc. 131, 2072 (2009).
  • 7I. Heller, G. Sitters, O. D. Broekmans, G. Farge, C. Menges, W. Wende, S. W. Hell, E. J. G. Peterman, and G. J. L. Wuite, Nature Methods 10, 910 (2013).
  • 8R. P. Goodman, I. A. T. Schaap, C. F. Tardin, C. M. Er- ben, R. M. Berry, C. F. Schmidt, and A. J. Turberfield. Science 310, 1661 (2005).
  • 9J. Li, H. Pei, B. Zhu, L. Liang, M. Wei, Y. He, N. Chen, D. Li, Q. Huang, and C. Fan, ACS Nano 5, 8783 (2011).
  • 10J.-W. Keum and H. Bermudez, Chem. Commun. 7036 (2009).

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部