期刊文献+

低渗透油藏毛细管压力动态效应的数值模拟研究 被引量:5

Numerical research on dynamic effect of capillary pressure in low permeability reservoirs
原文传递
导出
摘要 实验分析和理论研究表明毛细管压力存在动态效应,即其与润湿相流体的饱和度变化率相关,已有的物理实验表明低渗透油藏中的毛细管压力动态效应对于油气渗流存在着较大的影响。该文首先根据23个低渗岩心渗流曲线的数值拟合分析结果,建立了各项物理意义明确的非线性渗流运动方程,然后通过构造三种不同的饱和度变化速率的润湿相流体饱和度时变曲线,利用有限元数值方法模拟了三种饱和度曲线对应下的一维水驱油过程,并在完全基于数学方法较少依赖于物理实验的基础上计算了毛细管压力曲线。数值模拟的结果表明,低渗透油藏中存在较为明显的毛细管压力动态效应,且动态系数与介质的固有渗透率负相关,与润湿相流体的黏滞系数正相关。并通过与达西线性渗流模拟结果的对比表明了低渗油藏中非线性渗流产生的毛细管压力动态效应更为明显,动态系数也更大。 Physical experiments and theoretical analysis indicate that the capillary pressure is not only related to saturation of the wetting phase, but also to the time derivative, which is called dynamic effects. And the previous research shows that the porous flow process is effected by the dynamic effect in low permeability reservoirs. Based on the fitting analysis results of thev- p curves of 23samples, a nonlinear moving equation of porous flow is obtained. Three different saturation curves varying by time is introduced, and corresponding to which three FEM numerical simulations of physical process of 1D water drive displacement and the calculation of capillary pressure are accomplished. The FEM numerical results show relatively visible dynamic effects of capillary pressure in low permeability reservoirs. There is a negative correlation between dynamic coefficients and the intrinsic permeability, and a positive correlation between dynamic coefficients and the viscosity of wetting phase. The comparison results between the Darcy and the nonlinear porous flow indicate that the dynamic effects of capillary pressure in the low permeability reservoirs are more obviously and significant.
出处 《水动力学研究与进展(A辑)》 CSCD 北大核心 2014年第2期189-196,共8页 Chinese Journal of Hydrodynamics
基金 国家"十二五"重大油气专项课题(2011ZX05008-004-44)~~
关键词 低渗透 毛细管压力 动态效应 数值模拟 动态系数 low permeability capillary pressure dynamic effect numerical simulation dynamic coefficients
  • 相关文献

参考文献19

  • 1TOSHIHIRO S, DENIS M 0, ILLANGASEKARE H. Direct quantification of dynamic effects in capillary pressure for drainage-wetting cycles[J]. Vadose ZoneJournal, 2010, 9(2): 424-437.
  • 2BROOKS R H, COREY A T. Hydraulic properties of porous media[M]. Fort Collins, USA: Colorado State University, 1964,257-262.
  • 3Van GENUCHTEN M TH. A closed-form equation for predicting the hydrau-lic conductivity of unsaturated soils[J]. Soil Science Society of AmericaJournal, 1980, 44(5): 892-898.
  • 4HASSANIZADEH S M, CELIA M A, DAHLE H K. Dynamic effect in the capillary pressure-saturation relationship and its impacts on unsaturated flow[J]. Vadose ZoneJournal, 2002,1(1): 38-57.
  • 5O'CARROLL 0 M, PHELAN TJ, ABRIOLA L M. Exploring dynamic effects in capillary pressure in multistep outflow experiments[J]. Water Resources Research, 2005,41(11): 114-128.
  • 6MIRZAEI M, DAS 0 B. Dynamic effects in capillary pressure-saturations relationships for two-phase flow in 3D porous media: Implications of micro-heterogeneities[J]. Chemical Engineering Science, 2007, 62(7): 1927-1947.
  • 7GRAY W G, HASSANIZADEH S M. Paradoxes and realities in unsaturated flow theory[J]. Water Resources Research, 1991,27(8): 1847-1854.
  • 8GRAY W G, HASSANIZADEH S M. Unsaturated flow theory including interfacial phenomena[J]. Water Resources Research, 1991b, 27(8): 1855-1863.
  • 9HASSANIZADEH S M, GRAY W G. Thermodynamic basis of capillary pressure in porous medialJ]. Water Resources Research, 1993, 29(10): 3389-3406.
  • 10姚同玉,黄延章,李继山.孔隙介质中稠油流体非线性渗流方程[J].力学学报,2012,44(1):106-110. 被引量:14

二级参考文献56

共引文献138

同被引文献140

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部