期刊文献+

一种改进的自适应差分演化算法 被引量:1

An Improved Adaptive Differential Evolution Algorithm
下载PDF
导出
摘要 差分演化是一种简单、有效的全局数值优化算法,相关研究表明,参数的自适应能够有效提高算法的性能.提出了一种集成的混合参数自适应差分演化算法,并巧妙利用一种自适应选择机制来选择算法池中的算法,通过对25个国际标准测试函数进行测试,实验结果表明,该方法在最优解质量、稳定性、收敛速度优于其它被比较的算法. Differential evolution (DE) is a simple and efficient global optimization algorithm for numerical optimization. Parameter adaptation is proved to be effective to improve the performance of the classical DE algo- rithm. Different parameter adaptation techniques have been proposed in the DE literature. In this paper, a hy- brid parameter adaptation method is proposed, and the performance of the proposed technique is compared with two adaptive DE variants, namely, jDE and JADE. Based on the analysis of the results, different parameter ad- aptation techniques are combined and an improved adaptive selection technique is used to choose the most suit- able one while solving a specific problem. Experimental results indicate that the improved algorithm outperforms the compared state-of-the-art DE variants.
作者 鄢靖丰
出处 《许昌学院学报》 CAS 2014年第2期74-77,共4页 Journal of Xuchang University
基金 河南省重点科技攻关项目(122102210488) 许昌学院科研项目资助计划(2012069) 许昌学院优秀青年骨干教师资助计划
关键词 差分演化算法 参数自适应 数字优化 differential evolution algorithm parameters self-adapting control parameter optimization
  • 相关文献

参考文献10

  • 1Storn R, Price K. Differential evolution-A simple and efficient heuristic for global optimization overcontinuous spaces [ J]. J. of Global Optim, 1997, 11(4):341-359.
  • 2Price K, Storn R, Lampinen J. Differential Evolution: A Practical Approach to Global Optimization[ C ]. Berlin : Springer - Verlag, 2005.
  • 3Das S,Abraham A, Konar A. Automatic clustering using an improved differential evolution algorithm[ J ]. IEEE Trans. on Syst. Man, Cybern. A Syst. Humans, 2008, 38(1):218-237.
  • 4Swagatam Das, Ponnuthurai N. Suganthan. Differential evolution: A survey of the state-of-the-art[ J]. IEEE Trans. on Evol. Comput, 2011, 15(1) :4 -31.
  • 5Gperle R, Muler S D, Koumoutsakos P. A parameter study for differential evolution[ J]. In Proc. WSEAS Int. Conf. Ad- vances Intell. Syst, Fuzzy Syst. , Evol. Comput, 2002, 12(3) 293-298.
  • 6Liu J, Lampinen J. A fuzzy adaptive differential evolution algorithm[ J]. Soft Comput, 2005, 9(6) :448 - 462.
  • 7Brcst J,Greiner S, Boskovi'c B, et al. Self-adapting control parameters in differentialevolution: A comparative study on nu- merical benchmark problems [ J ]. IEEE Trans. on Evol. Comput, 2006,10 (6) :646 - 657.
  • 8Jingqiao Zhang, Arthur C. Sanderson. JADE: Adaptive differential evolution with optional external archive[ J ]. IEEE Trans. on Evol. Comput, 2009,13(5) :945 -958.
  • 9Suganthan P N, Hansen N, Liang J J,et al. Problem definitions and evaluation criteria for the CEC2005 special session on real - parameter optimization [ C ]. Germany : Munchen, 2005.
  • 10Ayed Salman, Andries Petrus Engelbrecht, Mahamcd G H. Omran. Empirical analysis of self-adaptive differential evolu- tion. European [ J]. Journal of Operational Research, 2007, 183 (2) :785 - 804.

同被引文献15

  • 1贾丽媛,张弛.自适应差分演化进化算法[J].中南大学学报(自然科学版),2013,44(9):3759-3765. 被引量:9
  • 2袁菁穗.差分演化算法研究综述[J].高校理科研究,2013,29(1):1-2.
  • 3Huang G B,Zhu Q Y,Siew C K.Extreme learning machine:Theory and applications[J].Neurocomputing,2006,70(1-3):489-501.
  • 4Ojala T,Pietikinen M,Harwood DA.Comparative Study of Texture Measures with Classification based on Feature Distribution[J].Pattern Recognition,1996,1(29):51-59.
  • 5Ojala T,Pietikinen M,MenpT.Multiresolution gray-scale and rotation invariant texture classification with Local Binary Patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):971-987.
  • 6Ojala T,Pietikinen M,MenpT.A generalized Local Binary Pattern operator for multiresolution gray scale and rotation invariant texture classification[C].Second International Conference on Advances in Pattern Recognition,Rio de Janeiro,Brazil,2001:397-406.
  • 7R S Phillip.Using a Differential Evolutionary Algorithm to Test the Efficient Market Hypothesis[J].Computational Economics,2012(40):377-385.
  • 8Huang G B,Wang D.Advances in extreme learning machines(ELM2010)[J].Neurocomputing,2011,74(16):2411-2412.
  • 9Cao J W,Lin Z P,Huang G B.Self-Adaptive Evolutionary Extreme Learning Machine[J].Neural Processing Letters,2012,36(3):285-305.
  • 10贺毅朝,王熙照,刘坤起,王彦祺.差分演化的收敛性分析与算法改进[J].软件学报,2010,21(5):875-885. 被引量:68

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部