期刊文献+

一种改进的协同过滤推荐算法

下载PDF
导出
摘要 目前,协同过滤算法在电子商务中得到了广泛的应用。伴随着网络上客户和产品的数量剧增,推荐系统的推荐效率成为了推荐系统在电子商务中应用的一大挑战。因此,提高协同过滤算法的效率变得越来越重要。本文开发了一种基于Hadoop的协同过滤推荐算法,实现了用MapReduce分布式计算框架来提高推荐算法的效率,同时也扩大算法的可扩展性。实验表明:基于Hadoop集群的推荐算法在推荐系统的可伸缩性和效率方面都有极大的优化。
作者 刘团
出处 《福建电脑》 2014年第2期91-94,共4页 Journal of Fujian Computer
  • 相关文献

参考文献8

  • 1J. Dean and S. Ghemawat, "Mapreduce:Simplified data process- ing on large clusters," Procedings of OSDI 2004: Sixth Sixth Sym-posium on Operating System Design and Implementation, 2004.
  • 2Hadoop. Available: http://hadoop.apache.org/core/.
  • 3T. HengSong and Y. HongWu, "A Collaborative Filtering lkecommendation Algorithm Based on Item Classification," in Cir- cuits, Communications and Systems. PACCS '09. Pacific-Asia Conference on, 20{39, pp. 694-697.
  • 4S. Ping and Y. HongWu, "An Item Based Collaborative Filter- ing Recommendation Algorithm Using Rough Set Prediction," in Artificial Intelligence, 2009. JCAI '09. International Joint Confer- ence on, 2009, pp. 308-311.
  • 5W. Pu and Y. HongWu, "A Personalized Recommendation Algorithm Combining Slope One Scheme and User Based Collab- orative Filtering," in Industrial and ln/i3miation Systems, 2009. IIS '09. International Conference on, 2009, pp. 152-154.
  • 6B. N. Miller, I. Albert, S. K. Lain, J. A. Konstan, and J. Riedl, "MovieLens unplugged: experiences with an occasionally connected recommender system," presented at the Proceedings of the 8th in- ternational conference on Intelligent user interfaces, Miami, Florida, USA, 2O03.
  • 7G. Amdahl, "Validity of the sigle-processor approach to achieving large sc;fle computing capabilities," in Proc. AFIPS Conf., 1967, pp. 483-485.
  • 8V. Kumar and V. Singh, "Scalability of parallel algorithms for the all-pairs shortest path problem: A summary of results," in Proc. of Conf. on Parallel Processing, Chicago, IL, 1990, pp. 136-140.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部