期刊文献+

有效价差的极大似然估计 被引量:2

Maximum Likelihood Estimator of Effective Spread
原文传递
导出
摘要 有效价差是刻画金融资产交易成本的一种重要度量。本文基于Roll的价格模型,利用对数价格极差分布的近似正态特征,提出了一种有效价差的近似极大似然估计,并通过数值模拟比较了这一新的估计与以往文献中提出的Roll的协方差估计、贝叶斯估计以及High-LOW估计在各种不同状况下的精度。模拟的结果表明,无论是在连续交易的理想状态还是交易不连续且价格不能被完全观测到的非理想状态下,极大似然估计和High-Low估计的精度均高于协方差和贝叶斯估计;当波动率相对较小的时候,极大似然估计的精度优于High-Low估计;另外,在非理想情形下,极大似然估计要比High-Low估计更加稳健。 Effective spread is an important measure of the transaction cost of fi- nancial asset. Based on Roll's price formation model, this paper puts forward a quasi maximum likelihood estimator for effective spread by approximating the dis- tribution of the logarithm of price range with a normal distribution. Monte Carlo simulation studies have been conducted to make a comparison of the accuracy be- tween the MLE and other three estimators proposed in early literature. Simulation results reveals that, both in the ideal case when the prices can be observed continu- ously and in the more realistic case when the trading is not consecutive, the MLE and High-Low estimator are more accurate than the other two estimators. If the volatility is relatively smaller than the spread, the performance of MLE will be su- perior to the High-Low method. Moreover, the MLE is obviously more robust than the High-Low estimator to the practical problems.
作者 高扬 王明进
出处 《数量经济技术经济研究》 CSSCI 北大核心 2014年第5期133-150,共18页 Journal of Quantitative & Technological Economics
基金 国家自然科学基金项目"基于价格极差的波动率模型"(71271007)的资助
关键词 流动性 买卖价差 价格极差 估计方法 遗传算法 Liquidity Bid-ask Spread Price Range Estimation Method Ge-netic Algorithm
  • 相关文献

参考文献20

  • 1Alizadeh S.,M. W. Brandt, and F. X. Diebold, 2002,Range-based, Estimation of Stochastic Vola-tility Models [J],The Journal of Finance, 57,1047.1091.
  • 2Choi J. Y.,D. Sadardro,and K. Shastri,1988,On the Estimation of Bid-ask Spreads : Theoryand Evidence [J],Journal of Financial and Quantitative Analysis,23,219.230.
  • 3Corwin S.,and P. Schultz. 2012,A Simple Way to Estimate Bid-ask Spreads from Daily Highand Low Prices [J],Journal of Finance,67,719.760.
  • 4Feller W.,1951,The Asymptotic Distribution of the Range of Sums of Independent Random Vari-ables [J], Annals of Mathematical Statistics, 22,427.432.
  • 5Gao Y.,and M. Wang, 2013,Asymptotic Comparison of Two Spread Estimators [R],WorkingPaper of Guanghua School of Management, Peking University.
  • 6Glosten L. R.,and L. E. Harris, 1988,Estimating the Components of the Bid-ask Spread [J],Journal of Financial Economics,21,123.142.
  • 7Goldberg D. E.,1989,Genetic Algorithms in Search,Optimization & Machine Learning [M],Addison-W esley.
  • 8Goyenko R. Y.,C. W. Holden,and C. A. Trzcinka,2009,Do Liquidity Measures Measure Liquidi-ty "I [J] Journal of Financial Economics,92,153.181.
  • 9Harris L.,1990,Statistical Pt'opertics of the Roll Serial Covariance Bid~ask Spread Estimator[J],Journal of Finance,45,579.590.
  • 10Hasbrouck J. , 2004,Liquidity in the Futures Pits : In ferring Market Dynamics from IncompleteData [J],Journal of Financial and Quantitative Analysis, 39,305.326.

同被引文献6

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部