期刊文献+

基于小波域滤波的迭代硬阈值压缩感知重构 被引量:1

Iterative Hard Thresholding Recovery Alogrithm for Compressed Sensing Using Wavelet Filtering
下载PDF
导出
摘要 图像压缩感知迭代重构算法主要采用迭代阈值法解决信号的重构问题,但是迭代阈值法仅仅利用变换系数进行阈值处理,并未考虑系数的邻域统计特性,导致重构性能不高。提出一种基于小波域滤波的迭代硬阈值迭代算法,利用小波域系数的邻域统计特性修订迭代硬阈值重构算法的代价函数,进行两步迭代收缩,并在迭代中用小波域滤波除去其中的重构噪声。实验结果表明,在相同的观测数据下,相比已有的经典算法,新算法的重构图像质量较高,并且可以获得快速的重构速度。 Iterative thresholding recovery method is used to solve the signal reconstruction problems in many iterative image compressed sensing techniques,which only treatment threshold itself and do not exploit the statistic characteristics of transform coefficients in neighborhood. A iterative hard thresholding recovery algorithm using wavelet filtering is presented,it improves the cost function with the statistical dependencies between transform coefficients,a two-step iterative shrinkage and wavelet filter which remove the reconstruction noise is used in iterative recovery. Experimental results show that,compared to other algorithms,the proposed algorithm can get higher image reconstruction performance,and get fast reconstruction speed with the same measurement rate.
作者 王玮
出处 《电视技术》 北大核心 2014年第9期32-35,共4页 Video Engineering
关键词 信号处理 压缩感知 迭代硬阈值重构 小波域滤波 signal processing compressed sensing iterative hard threshold reconstruction wavelet filtering
  • 相关文献

参考文献8

二级参考文献151

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献808

同被引文献12

  • 1秦川,王朔中,张新鹏.一种基于视觉特性的图像摘要算法[J].中国图象图形学报,2006,11(11):1678-1681. 被引量:17
  • 2VENKATESAN R, KOON S M, JAKUBOWSKI M H,et al. Robust image hashing[ C ]//Proc. IEEE International Conference on Image Processing. Vancouver BC, Canada : IEEE Press ,2000:664-666.
  • 3LEFEBVRE F, MACQ B,LEGAT J D. RASH:Radon soft hash algo- rithm [ C]//Proc. European Signal Processing Conference. Tou- louse, France : IEEE Press ,2002:299-302.
  • 4FRIDR[CH J, GOIJAN M. Robust hash functions for digital water- marking[ C ]//Proc. IEEE International Conference on Infurmation Technology: Coding and Computing. LasVegas, Nevada, USA : IEEE Press, 2000 : 178 - 183.
  • 5HARR[S C, STEPHENS M. A combined corner and edge detector [C]//Proc. Alvey Vision Conference. [S.l. ] :IEEE Press,1988: 147-151.
  • 6LEE D D,SEUNG H S. Learning the parts of objects by nonnega- tire matrix factorization [ J ]. Nature, 1999 ( 21 ) :788-791.
  • 7LEE D D,SEUNG H S. Algorithms for non-negative matrix factori- zation[ C]//Proc. Advances in Neural Information Processing Sys- tems. [ S.l. ] :IEEE Press,2001:556-562.
  • 8MONGA V,MIHfAK M K. Robust and secure image hashing via non- negative matrix factorizations [ J]. IEEE Trans. Information Forensics and Security ,2007,2 ( 3 ) :376-390.
  • 9叶卫国,韩水华.基于内容的图像Hash算法及其性能评估[J].东南大学学报(自然科学版),2007,37(A01):109-113. 被引量:5
  • 10牛夏牧,焦玉华.感知哈希综述[J].电子学报,2008,36(7):1405-1411. 被引量:98

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部