期刊文献+

基于支持向量分位数回归多期VaR测度 被引量:11

Evaluating multiperiod VaR via support vector quantile regression
下载PDF
导出
摘要 为实现VaR风险准确测度,考虑到波动聚集、厚尾与非对称等金融市场典型特征,基于支持向量分位数回归模型,研究了VaR及其影响因素之间的线性及非线性依赖关系,给出了多期VaR风险测度方法,并将其与传统VaR风险测度方法进行了比较.选取上证指数、香港恒生指数和标准普尔500指数进行实证研究,VaR回测检验结果表明基于支持向量分位数回归模型的多期VaR风险测度在样本内与样本外都有良好的表现. Based on the support vector quantile regression(SVQR) model, this article discussed the linear or nonlinear relationship between VaR and its predictors, and proposed a new method ofmultiperiod VaR measure. The new method can give an accurate evaluation of VaR by considering the financial stylized facts, including volatility clustering, heavy tail, and asymmetry. For the empirical illustration, Three securities price indices: SSEC, HSI, and S&P500 from financial markets are selected. The VaR backtest results show that the new method is superior to the traditional VaR measure both in sample and out of sample.
出处 《系统工程学报》 CSCD 北大核心 2014年第2期202-214,共13页 Journal of Systems Engineering
基金 国家自然科学基金资助项目(71071087 70901048) 高等学校全国优秀博士学位论文作者专项资金资助项目(200982) 中央高校基本科研业务费专项资金资助项目(2011HGRJ0006 2012HGBZ0189) 山东省自然科学基金项目(ZR2010GM005) 全国统计科研计划重点资助项目(2012LZ041)
关键词 多期VaR 分位数回归 支持向量回归 GARCH模型 multiperiod VaR quantile regression support vector regression GARCH model
  • 相关文献

参考文献26

  • 1Morgan J. Riskmetrics: Technical document[R]. New York: Morgan Guaranty Trust Company, 1996.
  • 2Hull J, White A. Incorporating volatility updating into the historical simulation method for value-at-risk[J]. Journal of Risk, 1998, 1(1): 5-19.
  • 3Koenker R W, Bassett Jr G. Regression quantiles[J]. Econometrica, 1978, 46(1): 33-50.
  • 4Taylor J W. A quantile regression approach to estimating the distribution of multiperiod returns[J]. The Journal of Derivatives, 1999, 7(1): 64-78.
  • 5Taylor J W. A quantile regression neural network approach to estimating the conditional density ofmultiperiod returns[J]. Joumal of Forecasting, 2000, 19(4): 299-311.
  • 6Chen M Y, Chen J. Application of quantile Regression to Estimation of Value at Risk[R]. Jiayi: National Chung-Cheng University, 2002.
  • 7Engle R F, Manganelli S. CAViaR: Conditional autoregressive value at risk by regression quantiles[J]. Journal of Business & Eco- nomic Statistics, 2004, 22(4): 367-381.
  • 8叶五一,缪柏其.应用门限分位点回归模型估计条件VaR[J].系统工程学报,2008,23(2):154-160. 被引量:10
  • 9叶五一,缪柏其.基于动态分位点回归模型的金融传染分析[J].系统工程学报,2012,27(2):214-223. 被引量:18
  • 10Shim J, Kim Y, Lee J, et al. Estimating value at risk with semiparametric support vector quantile regression[J]. Computational Statistics, 2012, 27(4): 685-700.

二级参考文献113

共引文献152

同被引文献124

引证文献11

二级引证文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部