期刊文献+

一种有效的加权PCA物质分类方法 被引量:1

An efficient weighted PCA method in material classification
原文传递
导出
摘要 利用经典PCA算法对数据进行分类,所得到的前两个主成分不能代表原始数据的大部分信息,使得分类效果不明显。为了克服这一缺点,提出了一种采用数据预处理技术的加权PCA分类方法,达到较明显的分类效果。该方法首先对样本数据进行归一化处理,将不同尺度的数据规约到同一范围,在此基础上,计算出每个样本在整个数据集合中的权值,接着对归一化后的数据进行均值化或去均值的处理,然后对处理后的样本数据乘以权值来体现其重要程度,最后再利用奇异值分解过程实现主成分分析。计算机仿真结果表明,所提出的方法能很好的将数据分类,与传统PCA法相比,优势明显。 The first two principal components after using classical PCA algorithm to classify the data can not represent the most information of original data so that the effect is not very obvious. In order to overcome the shortcoming, a weighted PCA method adopted the data pre-processing technology in material classification was presented. The method firstly normalized the sample data to make the different scale data to a same range, and then calculated the weight of each sample data in the data set. Based upon that, the sample data which was processed by the technique of equalization or mean removal was multiplied by weight to highlight its importance. Finally, singular value decomposition process was utilized to realize principal component analysis. The computer simulation results show that the proposed method can classify the data well and its advantages are obvious bv eamnarison with traditinn PCA methnd
作者 陈佩 辛云宏
出处 《计算机与应用化学》 CAS CSCD 北大核心 2014年第4期466-470,共5页 Computers and Applied Chemistry
基金 陕西省自然科学基础研究计划工业攻关项目(2012K09-09) 2012年度中央高校基本科研业务费专项资金资助(GK201301008)
关键词 主成分分析 权值 归一化 均值化 principal component analysis weight normalization equalization
  • 相关文献

参考文献16

  • 1Johnson D E. Applied Multivariate Methods for Data Analysts. Beijing: Higher Education Press, 2005, 93-111.
  • 2Pearson K, Mag P. On lines and planes of closest fit to systems of points in space. 1901(2):559-572.
  • 3Niu Zhiguo, Qiu Xuehong. Facial expression recognition based on weighted principal component analysis and support vector machines. International Conference on Advanced Computer Theory and Engineering, Chengdu: IEEE, 2010:174-178.
  • 4Patra S, Acharya S K. Dimension reduction of feature vectorsusing WPCA for robust speaker identification system. IEEE International Conference on Recent Trends in Information Technology. Kunming: IEEE, 2011: 28-32.
  • 5Jonathnn Shlens. A Tutorial on Principal Component Analysis. Version I, 2009.
  • 6Nan Liu, Han Wang. Weighted principal component extraction with genetic algorithms. Applied Soft Computing, 2011.
  • 7张媛,张燕平.一种PCA算法及其应用[J].微机发展,2005,15(2):67-68. 被引量:21
  • 8王瑞霞,林伟,毛军.基于小波变换和PCA的SAR图像相干斑抑制[J].计算机工程,2008,34(20):235-237. 被引量:9
  • 9李芳清,倪永年,杨水平.主成分分析法用于土壤样品分类[J].南昌大学学报(理科版),2004,28(2):140-143. 被引量:4
  • 10刘湘云.基于主成分分析法的橙汁特征指标分类[J].绿色科技,2013,15(1):170-172. 被引量:2

二级参考文献61

共引文献162

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部