期刊文献+

云计算环境下可信服务的个性化推荐框架 被引量:5

Personalized Recommendation Framework for Trustworthy Services in Cloud Paradigm
下载PDF
导出
摘要 针对当前云计算环境下服务选择中服务推荐技术的不足,提出一种面向可信云服务的个性化推荐框架(PerReF),该框架基于独立、开放的云评价中心和云推荐中心架构,以可信云服务的多属性分析和概率统计分析为基础,使用模糊综合方法集成消费者对云服务可信属性的历史评价,并结合潜在用户在不同应用场景下的个性化需求,从可信属性权重、可信度期望、成本期望角度出发,对云服务进行过滤,再通过多次迭代的模糊相似度计算,找出最适合用户个性化特征的云服务.仿真实验分析表明,PerReF能够适应复杂的云计算环境,提供具有较高用户满意度的个性化推荐结果. Aiming to the service recommendation problem in cloud paradigm, this paper proposed a personalized recommendation framework for trustworthy services in cloud computing environment-PerReF, which consists of the independent, open cloud evaluation center and cloud recommendation center. In it, based on the multi-attributes analysis of trustworthy service and the probability statis- tics, the service evaluation data of trust attributes submitted by consumers was integrated by fuzzy synthetic method. Considering the personalized demands from potential user in specified scenery, it's necessary to filter some cloud services with bad quality of service according to the weights of trust attributes, trust expectation and cost expectation. By means of the results about the fuzzy similarity computing, the most suitable service matching the personalized features was recommended to potential user. The simulation experi- ments showed that the PerReF is suitable to the complex cloud computing environment, and can provide the personalized recommen- dation results to achieve the high user satisfaction.
出处 《小型微型计算机系统》 CSCD 北大核心 2014年第5期967-972,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61272148 61301136)资助 湖南省教育厅优秀青年科研项目(10B059)资助 教育部人文社会科学研究青年基金项目(11YJCZH227)资助
关键词 个性化推荐 可信服务 云计算 模糊相似度 personalized recommendation trustworthy service cloud computing fuzzy similarity
  • 相关文献

参考文献3

二级参考文献35

  • 1高迎,程涛远,王珊.对等网信任管理模型及安全凭证回收方法的研究[J].计算机学报,2006,29(8):1282-1289. 被引量:8
  • 2Xu HL, Wu X, Li XD, Yan BP. Comparison study of Internet recommendation system. Journal of Software, 2009,20(2):350-362 (in Chinese with English abstract), http://www.jos.org.cn/1000-9825/20/350.htm [doi: 10.3724/SP.J.1001.2009.00350].
  • 3Wang HM, Tang YB, Yin G, Li L. Trustworthiness of Internet-based software. Science in China (Series F: Information Sciences), 2006,49(6):759-773. [doi: 10.1007/s11432-006-2024-4].
  • 4Segaran T. Programming Collective Intelligence: Building Smart Web 2.0 Applications. O'Reilly Media, Inc., 2007.
  • 5Ran SP. A framework for discovering Web services with desired quality of service attributes. In: Zhang LJ, ed. Proc. of the Int'l Conf. on Web Services (ICWS 2003). 2003. 208-213. http://dblp.uni-trier.de/db/conf/icws/icws2OO3.html#Ran03.
  • 6Tian M, Gramm A, Naumowicz T, Ritter H, Schiller J. A concept for QoS integration in Web services. In: Proc. of the 4th Int'l Conf. on Web Information Systems Engineering Workshops (WISEW 2003). 2003. 149-155. http://citeseer.ist.psu.edu/old/ tian03concept.html [doi: 10.1109/WISEW.2003.1286797].
  • 7Truong HL, Samborski R, Fahringer T. Towards a framework for monitoring and analyzing QoS metrics of grid services. In: Proc. of the 2nd IEEE Int'l Conf. on e-Science and Grid Computing. 2006. http://portal.acm.org/citation.cfm?id=l192634 [doi: 10.1109/E- SCIENCE.2006.261149].
  • 8Maximilien ME, Singh MP. Toward autonomic Web services trust and selection. In: Proc. of the 2nd Int'l Conf. on Service Oriented Computing (ICSOC 2004). 2004. 212-221. http://portal.acm.org/citation.cfm?id=1035198 [doi: 10.1145/1035167. 1035198].
  • 9Yolum P, Singh MP. An agent-based approach for trustworthy service location. In: Proc. of the 1st Int'l Workshop on Agents and Peer-to-Peer Computing (AP2PC 2002). 2002. 45-56. http://www.springerlink.com/content/mtut3abakrrnvovn/ [doi: 10.1007/3- 540-45074-2_5].
  • 10Sensoy M, Pembe FC, Zirtiloglu H, Yolum P, Bener A. Experience-Based service provider selection in agent-mediated e-commerce. Engineering Applications of Artificial Intelligence, 2007,20(3):325-335. [doi: 10.1016/j.engappai.2006.06.003].

共引文献81

同被引文献90

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部