期刊文献+

贪婪追踪系列算法的分析与优化 被引量:4

Analysis and Optimization of Greedy Pursuit Algorithms
下载PDF
导出
摘要 从条件概率的角度分析了压缩感知信号重构,认为重构信号是在观测信号发生的条件下所发生的后验信号.基于信号的条件概率分析,提出一种简单而有效的算法优化方法,此方法可以提高贪婪追踪系列算法选择原子的准确性,在某种程度上可以削减感知矩阵自身相关度的影响.此外,本文概述了系列贪婪追踪算法,并应用本文提出的方法来改进它们.模拟实验表明,本文提出的方法可以改进大多数贪婪追踪算法,使算法在速度和精度上都有所提高. The paper analyzes the reconstruction signal of compressed sensing from perspective of conditional probability, and consid- ers the reconstruction signal as mean of posterior signal given observed signal. Based on the analysis, the paper puts forward an sim- ple and efficient method toward serials greedy pursuit algorithms. This method can promote the accuracy of selection columns of per- ception matrix and reduce the influence of self-correlation of perception matrix to some extent. Meanwhile, this paper reviews most of greedy pursuit algorithms, and applies the proposed method to improving them. Simulation experiments show that the proposed meth- od can improve most greedy pursuit algorithms, whether in the reconstruction precision or in the speed.
出处 《小型微型计算机系统》 CSCD 北大核心 2014年第5期1116-1119,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60870010)资助 华东交通大学科研基金项目(09111004)资助
关键词 压缩感知 非线性优化 贪婪追踪算法 条件概率 :compressed sensing ( CS ) nonlinear optimization greedy pursuit algorithms conditional probability
  • 相关文献

参考文献4

二级参考文献63

  • 1张军.求解不适定问题的快速Landweber迭代法[J].数学杂志,2005,25(3):333-335. 被引量:6
  • 2Donoho D L.Compressed sensing.IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 3Baraniuk R,et al.A simple proof of the restricted isometry property for random matrices.Constructive Approximation,2008,28(3):253-263.
  • 4Candes E J.The restricted isometry property and its implications for compressed sensing.Comptes Rendus Mathematique,2008,346(9-10):589-592.
  • 5Candes E J et al.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information.IEEE Transactions on Information Theory,2006,52(2):489-509.
  • 6Candes E J,Tao T.Near-optimal signal recovery from randora projections,Universal encoding strategies?IEEE Transactions on Information Theory,2006,52(12):5406-5425.
  • 7Romberg J.Imaging via compressive sampling.IEEE Signal Processing Magazine,2008,25(2):14-20.
  • 8Candes E J,Tao T.Decoding by linear programming.IEEE Transactions on Information Theory,2005,51(3):4203-4215.
  • 9Cand,et al.Sparsity and incoherence in compressive sampiing.Inverse Problems,2007,23(3):969-985.
  • 10Candes E,Tao T.The dantzig selector:Statistical estimation when P is much larger than n.Annals of Statistics,2007,35(6):2313-2351.

共引文献334

同被引文献44

  • 1YANG A Y, ZHOU Z, MA Y, et al. Towards a Robust Face Recognition System Using Compressive Sensing[C]//Eleventh Annual Conference of the International Speech Communication Association. Chiba Makuhari, 2010: 2250-2253.
  • 2WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 3ZHANG L, YANG M, FENG X, et al. Collaborative representation based classification for face recognition[J], arXiv preprint arX- iv,1204, 2358, 2012.
  • 4DENG W H, HU J N, GUO J. Extended SRC:undersampled face recognition via intraclass variant dictionary[J]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2012,34(9): 1864-1870.
  • 5MAJUMDAR A, WARD R K. Classification via group sparsity promoting regularization[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. ICASSP, 2009: 861-864.
  • 6ELHAMIFAR E, VIDAL R. Robust classification using structured sparse representation[C]//2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2011:1873-1879.
  • 7JENATFON R, AUDIBERT J Y, BACH F. Structured variable selection with sparsity-inducing norms[J]. Journal of Machine Learning Research, 2011,12:2777-2824.
  • 8BACH F, JENATYON R, MAIRAL J, et al. Structured sparsity through convex optimization[J]. Statistical Science, 2012,27(4): 450-468.
  • 9SCOTT S L, VARIAN H R. Predicting the present with bayesian structural time series[J]. International Journal of Mathematical Modelling and Numerieal Optimisation, 2014,5(1):4-23.
  • 10HUANG J, ZHANG T, METAXAS D. Learning with structured sparsity[J]. Journal of Machine Learning Research, 2011,12: 3371-3412.

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部