期刊文献+

加热和冷却速率对大豆蛋白凝胶特性的影响 被引量:3

Effect of Heating and Cooling Rate on the Properties of Soybean Protein Gel
下载PDF
导出
摘要 凝胶性是植物蛋白最重要的性质.采用小变形振荡(动态)流变测试研究大豆分离蛋白凝胶网络结构形成.结果表明:在加热阶段,储能模量(G’)和耗能模量(G”)都低于1Pa,G’<G”且基本保持恒定直到达到凝胶点.Tanδ值随着加热的进行逐渐降低,然后急剧下降,冷却阶段时降至最低且保持恒定,说明形成强而稳定的凝胶网络结构.当加热和冷却速率增大时(从0.5~4℃/min)G’值逐渐下降,表明最终形成凝胶强度下降;慢的加热(冷却)速率时(0.5、1、2℃/min) tanδ较小,说明相对于快的加热速率(4℃/min)形成了更好三维网络结构的凝胶;凝胶点和加热速率有关而不受冷却速率的影响.随着蛋白质浓度的增大,其凝胶G’值增大、tanδ值减少、凝胶点下降.因此,控制加热和冷却速率可以最大限度的提高热诱导大豆蛋白的凝胶强度,而不用改变蛋白质的浓度. Gelation is one of the most important properties for plant proteins.In this paper,gel network formation of soybean protein isolate has been studied using dynamic rheological measurements.During heating phase,the result revealed that the storage modulus(G') and loss modulus(G") were almost constant by tiny fluctuation below 1 Pa and the storage modulus was always smaller than the loss modulus until the gelling point reached.Tan delta (δ) values decreased gradually in heating phase,then followed by suddenly plunging to a very low level and remained constant at this low level of the entire cooling phase.This observation suggests that a stable gel network had formed.When both the heating and cooling rates increased(from 0.5 to 4 ℃/min),final G' value decreased,which was indicative of decreased gel strength.The lower heating (cooling) rates (0.5,1 and 2 ℃/min) resulted in smaller tan (δ).This hinted that the final product had the better three-dimensional structure compared to high heating and cooling rate (4 ℃/min).The gelling point was dependent on heating ratewhile unaffected by cooling rate.The higher protein concentration resulted in the higher G'.Tan δ and gelling point decreased in line with protein concentration increasing.Careful control of the heating and cooling rates enable maximum gel strength for heat-induced soybean protein gel,without having to alter the concentration of the protein.
出处 《中国粮油学报》 EI CAS CSCD 北大核心 2014年第4期26-31,共6页 Journal of the Chinese Cereals and Oils Association
关键词 大豆蛋白 凝胶 凝胶点 加热速率 冷却速率 soybean protein gelation gelling point heating rate cooling rate
  • 相关文献

参考文献15

  • 1Van Kleef F S M.Thermally induced protein gelation:gelation and rheological characterization of highly concentrated ovalbumin and soybean protein gels[J].Biopolymers,1986,25(1):31-59.
  • 2Ikeda S,Nishinari K.On solid-like rheological behaviors of globular protein solutions[J].Food Hydrocolloids,2001,15(4):401-406.
  • 3Lakemond C M M,de Jongh H H J,Paques M,et al.Gelation of soy glycinin;influence of pH and ionic strength on network structure in relation to protein conformation[J].Food Hydrocolloids,2003,17 (3):365-377.
  • 4郭兴凤,张艳红,陆惠,阮诗丰,周媛媛,肖新生.大豆分离蛋白凝胶制备和凝胶质构特性研究[J].中国粮油学报,2005,20(6):68-70. 被引量:53
  • 5华欲飞,Steve W.Cui,Qi Wang,Yoshinori Mine.不同大豆分离蛋白凝胶的流变学性质[J].中国粮油学报,2003,18(6):43-48. 被引量:18
  • 6Tunick M H.Small-strain dynamic rheology of food protein networks[J].Journal of Agricultural and Food Chemistry,2010,59(5):1481-1486.
  • 7Sun X D,Arntfield S D.Dynamic oscillatory rheological measurement and thermal properties of pea protein extracted by salt method:effect of pH and NaCl[J].Journal of Food Engineering,2011,105 (3):577-582.
  • 8Uruakpa F O,Arntfield S D.Impact of urea on the microstructure of commercial canola protein-carrageenan network:a research note[J].International Journal of Biological Macromolecules,2006,38 (2):115-119.
  • 9Sun X D,Arntfield S D.Gelation properties of salt-extracted pea protein isolate induced by heat treatment:effect of heating and cooling rate[J].Food Chemistry,2011,124(3):1011-1016.
  • 10Paulson A T,Tung M A.Thermally induced gelation of succinylated canola protein isolate[J].Journal of Agricultural and Food Chemistry,1989,37 (2):319-326.

二级参考文献27

  • 1胡传荣,胡小泓,饶建云,李纵云,程学良.大豆蛋白凝胶特性的研究[J].武汉食品工业学院学报,1996(4):11-17. 被引量:9
  • 2[1]Kinsella J E, Damodaran S, German B. Physicalchemical andFunctional Properties of Oilseed Proteins with Emphasis on Soy Proteins. In New Protein Foods, Vol. 5, Seed Storage Proteins;Altschul A M., Wilcke H L. Eds., Academic Press, INC. Orlando, 1985,107 - 179
  • 3[2]Utsumi S, Matsumura Y, Mori T. Structure- Function Relationships of Soy Proteins. In Food Proteins and Their Applications;Damodaran S.; Paraf, A., Eds.; Marcel Dekker, INC. New York,1997,257 - 291
  • 4[3]Mori T, Nakamura T, Utsumi S. Gelation Mechanism of Soybean 11S Globulin:Formation of Soluble Aggregates as Transient Intermediates. J. Food Sci. 1981,47:26 - 30
  • 5[4]German B, Damodaran S, Kinsella J E.Thermal Dissociation and Association Behavior of Soy Proteins. J. Agric. Food Chem. 1982,30:807 - 811
  • 6[5]Utzumi S, Damodaran S, Kinsella J E. Heat - Induced Interaction between Soybean Proteins: Preferential Association of 11S Basic Subunits and β - Subunits of 7S. J. Agric. Food Chem. 1984,32:1406- 1412
  • 7[6]Chronakis I S, Kasapis S, Richardson R K. Characterisation of a Commercial Soy Isolate by Physical Techniques. J. Texture Studies 1995,26: 371 - 389
  • 8[7]Laemmili U K. Cleavage of Structural Proteins During the Assembly of the Head of Bacteriophage T4. Nature. 1970,227:680 - 685
  • 9[8]Kato A, Nakai S. Hydrophobicity Determined by a Fluorescence Probe Methods and Its Correlation with Surface Properties of Proteins. Biochim. Biophys. Acta 1980,624:13 - 20
  • 10[9]Bradford M A.Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein -Dye Binding. Analytical Biochemisty 1976,72:248- 254

共引文献66

同被引文献28

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部