期刊文献+

Block(or Hamiltonian) Lie Symmetry of Dispersionless D-Type Drinfeld–Sokolov Hierarchy 被引量:2

Block(or Hamiltonian) Lie Symmetry of Dispersionless D-Type Drinfeld–Sokolov Hierarchy
原文传递
导出
摘要 In this paper, the dispersionless D-type Drinfeld–Sokolov hierarchy, i.e. a reduction of the dispersionless two-component BKP hierarchy, is studied. The additional symmetry flows of this hierarchy are presented. These flows form an infinite-dimensional Lie algebra of Block type as well as a Lie algebra of Hamiltonian type.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2014年第4期431-435,共5页 理论物理通讯(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No.11201251 the National Natural Science Foundation of China under Grant No.11271210 Zhejiang Provincial Natural Science Foundation under Grant No.LY12A01007 the Natural Science Foundation of Ningbo under Grant No.2013A610105 K.C.Wong Magna Fund in Ningbo University the National Science Foundation of China under Grant No.11371278 the Shanghai Municipal Science and Technology Commission under Grant No.12XD1405000 the Fundamental Research Funds for the Central Universities of China
关键词 additional Symmetry Block Lie algebras Hamiltonian Lie algebras dispersionless Drinfeld-Sokolov hierarchy of type D dispersion]ess two-component BKP hierarchy Lie对称性 哈密顿型 D型 散射 索科 层次结构 李代数 无色散
  • 相关文献

参考文献29

  • 1A. Yu. Orlov and E.I. Schulman, Lett. Math. Phys. 12 (1986) 171.
  • 2R. Dijkgraaf and E. Witten, Nucl. Phys. B 342 (1990) 486.
  • 3M. Douglas, Phys. Lett. B 238 (1990) 176.
  • 4M. Adler, T. Shiota, and P. van Moerbeke, Commun. Math. Phys. 171 (1995) 547.
  • 5E. Date, M. Kashiwara, M. Jimbo, and T. Miwa, Trans- formation Groups ]or Soliton Equations, Nonlinear In- tegrable Systems-Classical Theory and Quantum Theory~ World Science Publishing, Singapore (1983).
  • 6E. Date, M. Kashiwara, M. Jimbo, and T. Miwa, Phys. D 4 (1981/82) 343.
  • 7K. Takasaki, Lett. Math. Phys. 28 (1993) 177.
  • 8J.S. He, K.L. Tian, A. Foerster, and W.X. Ma, Lett. Math. Phys. 81 (2007) 119.
  • 9K. Ueno and K. Takasaki, Adv. Studies in Pure Math. 4 (1984) 1.
  • 10K. Takasaki, Commun. Math. Phys. 170 (1995) 101.

同被引文献1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部