期刊文献+

基于特征构造的影像跨尺度分类研究

A scale-span classification approach for multispectral images based on feature construction
原文传递
导出
摘要 本文提出一种跨尺度分类方法,该方法立足于多尺度像斑模型,应用特征构造来实现跨尺度特征的构建,从而将最佳尺度选择问题隐含在特征构造中,不直接进行最佳尺度选择,避免了主观选择尺度的弊端。实验结果证明跨尺度分类方法一方面能减少特征维数空间,另一方面能充分利用尺度之间的纵向信息,较单一尺度分类能更准确地区分地物,提高分类精度。 The paper proposed a scale-span classification method based on multi-scale homogeneous-re- gion model. The method uses the feature construction of the data mining to fulfill the construction of scale- span features, and the best scale choice is implicit in the new constructive features, rather than directly carrying on the best scale choice with subjective errors. The experimental result proved that the new classi- fication method could not only reduce the dimension of the feature space, but also fully use the longitude information between different scales, so that it would distinguish objects more accurately than sole-scale classification, thus improve the classification precision.
出处 《测绘科学》 CSCD 北大核心 2014年第4期3-7,共5页 Science of Surveying and Mapping
基金 国家自然科学基金资助项目(30770396/C0312) 国家自然科学基金资助项目(40971028/D010104)
关键词 特征构造 跨尺度 遗传规划 多光谱 分类 像斑 决策树 feature construction scale-span genetic programming multispectral images classifica-tion homogeneous-region decision tree
  • 相关文献

参考文献15

  • 1IONG-WEN TSAI. Segmentation of Multispectral Re- mote-sensing Images based on Markov Random Fields [J]. Geoscience and Remote Sensing, 1997 ( 1 ) : 264-266.
  • 2PAUL S, HONG, LANCE M, KAPLAN, MARK J,T SMITH. Hyperspectral Image Segmentation using Fil-ter Banks for Texture Augmentation[C]//Advances in Techniques for Analysis of Remotely Sensed Data. IEEE,2003:254-258.
  • 3LORENZO BRUZZONE. A Multilevel Context-Based System for Classification of Very High Spatial Resolu- tion Images[C]//IEEE transactions on Geoscience and Remote Sensing. 2006,44(9).
  • 4陈云浩,冯通,史培军,王今飞.基于面向对象和规则的遥感影像分类研究[J].武汉大学学报(信息科学版),2006,31(4):316-320. 被引量:245
  • 5ANTONIO J PLAZA,JAMES C TILTON. Automated Selection of Results in Hierarchical Segmentations of Remotely Sensed Hyperspectral Images[J]. Geoscience and Remote Sensing Symposium, IEEE, 2005 (7) : 4946- 4949.
  • 6HILAN BEANSUSAN, IBRAHIM KUSCU. Con- structive Induction Ssing Genetic Programming[C]// International Conference on Machine Learning, Work- shop on Evolutionary computing and machine learning. 1996.
  • 7M A FRIEDL, et al. Decision Tree Classification of Land Cover from Remotely Sensed Data[J]. Sensing of Environment, 1997,61 : 399-409.
  • 8S RASOUL SAFAVIAN. A Survey of Decision Tree Classifier Methodology[J]. IEEE Transactions on Sys- tems, Man, and Cybernetics. 1991,21 (3) : 660-674.
  • 9JAMES C TILTON. Hybrid Image Segmentation for Earth Remote Sensing Data Analysis[J']. Geoscience and Remote Sensing Symposium, 1996(1) :703-705.
  • 10ZIJIAN ZHENG. Constructing X-of-N Attributes for decision tree learning[J]. Machine Learning, 2000, 40 (1) :35-75.

二级参考文献10

  • 1Iio Y,Omatu S.Category Classification Method Using a Self-organizing Neural Network[J].International Journal of Remote Sensing,1997,18(4):829-845
  • 2Ricotta C.Evaluating the Classification Accuracy of Fuzzy Thematic Maps with a Simple Parametric Measure[J].International Journal of Remote Sensing,2004,25(11):2 169-2 176
  • 3Vander S C J,Jong S M,Roo A P J.A Segmentation and Classification Approach of IKONOS-2 Imagery for Land Cover Mapping to Assist Flood Risk and Flood Damage Assessment[J].International Journal of Applied Earth Observation and Geoinformation,2003 (4):217-229
  • 4Huang C,Davis L S,Townshend J R G.An Assessment of Support Vector Machines for Land Cover Classification[J].International Journal of Remote Sensing,2002,23(4):725-749
  • 5Magnussen S,Boudewyn P,Wulder M.Contextual Classification of Landsat TM Images to Forest Inventory Covertypes[J].International Journal of Remote Sensing,2004,25(12):2 421-2 440
  • 6Volker W.Object-based Classification of Remote Sensing Data for Change Detection[J].ISPRS Journal of Photogrammetry & Remote Sensing,2004 (58):225-238
  • 7eCognition,User Guide.Definiens Imaging GmbH,Munich[OL].http://www.definiensimaging.com/product.htm,2002
  • 8Benz U C,Peter H,Gregor W,et al.Multi-resolution,Object-oriented Fuzzy Analysis of Remote Sensing Data for GIS-ready Information[J].ISPRS Journal of Photogrammetry & Remote Sensing,2004 (58):239-258
  • 9骆剑承,王钦敏,马江洪,周成虎,梁怡.遥感图像最大似然分类方法的EM改进算法[J].测绘学报,2002,31(3):234-239. 被引量:84
  • 10陈秋晓,骆剑承,周成虎,郑江,鲁学军,沈占锋.基于多特征的遥感影像分类方法[J].遥感学报,2004,8(3):239-245. 被引量:98

共引文献273

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部