期刊文献+

语音压缩感知硬阈值梯度追踪重构算法 被引量:3

Hard Threshold Gradient Pursuit Reconstruction Algorithm for Speech Compressed Sensing
下载PDF
导出
摘要 本文基于语音信号在DCT域的近似稀疏性,采用压缩感知(Compressed Sensing,CS)理论对其进行压缩采样和重构。CS中的梯度追踪(Gradient Pursuit,GP)算法因计算量小,迭代硬阈值(Iterative Hard Threshold,IHT)算法因实现简单,被广泛用来重构信号。针对压缩感知理论中的GP算法的支撑集在每次迭代时仅增加一个元素,以及该算法每步迭代时仅经过一次沿负梯度方向搜索求得的解可能不是最优解的问题,本文提出了语音重构的硬阈值梯度追踪(Hard Threshold Gradient Pursuit,HTGP)算法。该算法利用IHT算法的思想选择原子更新支撑集,每步迭代时支撑集中含有K个元素,而且HTGP算法每步迭代时经过k次沿负梯度方向搜索得到最优解来代替使用计算量巨大的最小二乘来求解。实验结果表明,压缩比相同的情况下,HTGP算法具有更快速的收敛性和更高的信噪比。 Based on the approximate sparsity of speech signal in the DCT domain,compressed sensing (CS) theory is applied to reconstruct speech signal in this paper.Gradient pursuit (GP) algorithm with low complexity and iterative hard threshold algorithm with simple realization are widely used to reconstruct signals for CS.And the hard threshold gradient pursuit (HTGP) algorithm for speech reconstruction is proposed to solve the problem that the support of GP algorithm is only added one element and the solution may not be the optimal solution in the course of each iterative.The HTGP algorithm selects for atomic in order to update the support through the IHT algorithm,and the support set contains K elements within per iteration.The HTGP algorithm searches for optimal solution through the negative gradient direction instead of the huge computation of least square solution in per iteration.The experimental simulations demonstrate that the HTGP algorithm has faster convergence and higher signal to noise ratio at the same sampling rate.
作者 杨真真 杨震
出处 《信号处理》 CSCD 北大核心 2014年第4期390-398,共9页 Journal of Signal Processing
基金 重大基础研究973计划(2011CB302903) 国家自然科学基金项目(60971129 61271335 61070234 61271240) 江苏省普通高校研究生科研创新计划(CXZZ12_0469)资助项目 江苏省高校自然科学研究(13KJB510020)资助项目
关键词 压缩感知 语音重构 迭代硬阈值 梯度追踪 硬阈值梯度追踪 compressed sensing speech reconstruction iterative hard threshold gradient pursuit hard threshold gradient pursuit
  • 相关文献

参考文献24

  • 1Donoho D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 2BaraniukRG.Compressivesensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Candes E J,Wakin M B.An introduction to compressive sampling[J].IEEE Signal Processing Magazine,2008,25(2):21-30.
  • 4Donoho D L,Tsaig Y.Extensions of compressed sensing[J].Signal Processing,2006,86(3):533-548.
  • 5石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:713
  • 6Tropp J,Gilbert A.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Transactions on Information Theory,2007,53(12):4655-4666.
  • 7Needell D,Vershynin R.Signal recovery from incomplete and inaccurate measurements via regularized orthngonal matching pursuit[J].IEEE Journal on Selected Topics in Signal Processing,2010,4(2):310-316.
  • 8Dai W,Milenkovic O.Subspace pursuit for compressive sensing signal reconstruction[J].IEEE Transactions on Information Theory,2009,55(5):2230-2249.
  • 9Do T T,Gan L,Nguyen N,Tran T D.Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C]FAsilomar Conference on Signals,Systems,and Computers,Pacific Grove,California,2008,10:581-587.
  • 10Blumeusath T,Davies M E.Gradient pursuits[J].IEEE Transactions on Signal Processing,2008,56(6):2370-2382.

二级参考文献186

  • 1张军.求解不适定问题的快速Landweber迭代法[J].数学杂志,2005,25(3):333-335. 被引量:6
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 4Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 5Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 6E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 7E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 8Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 9G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 10V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.

共引文献847

同被引文献26

  • 1符晓娟,杨万全.利用离散余弦变换的语音信号压缩方案[J].信息技术,2006,30(11):74-76. 被引量:5
  • 2胡广书.数字信号处理[M].2版.北京:清华大学出版社.2003.
  • 3Chong Cha Keon, Arzawa Kiyoharu, Saito Takahiro, et al. Sub- band image coding with biorthgonal wavelets [J]. IEICE Trans Fundamentals,2001,75(7):871-881.
  • 4Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52 (4) : 1289 -1306.
  • 5Candes E J, Romberg J, Tao T. Robust uncertainty prin- ciples: Exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Transactions on Infor- mation Theory, 2006, 52(2) : 489-509.
  • 6Mingrui Yang, Frank de Hoog. Orthogonal Matching Pur- suit with Thresholding and Its Application in Compressive Sensing [ J ]. IEEE Transactions on Signal Processing, 2015, 63 (20) :5479-5486.
  • 7Andrianiaina Ravelomanantsoa, Hassan Rabah, Amar Rouane. Compressed sensing: A Simple Deterministic Measurement Matrix and a Fast Recovery Algorithm[ J].IEEE Transactions on Instrumentation and Measurement, 2015, 64(12) :3405-3413.
  • 8Golub G H, Loan C F V. Matrix Computations [ M ]. Third Edition. London, UK: The Johns Hopkins Univer- sity Press, 1996.
  • 9Hoda Dehghan, Richard M, Dansereau, Adrian D C. Restricted Isometry Property on Banded Block Toeplitz Matrices with Application to Multi-Channel Convolutive Source Separation [ J ]. IEEE Transactions on Signal Pro- cessing, 2015, 63(21 ) :5665-5676.
  • 10华容.基于不完全小波包分解的语音信号数据压缩[J].计算机工程与设计,2009,30(10):2471-2474. 被引量:1

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部