期刊文献+

菱铁矿对砷的吸附解析特性试验研究

The Contrastive study of Siderite and Ferric oxide on the Arsenic Adsorptive-desorptive Behaviour
下载PDF
导出
摘要 砷污染是地下水污染中的严重威胁之一。菱铁矿是砷吸附材料的一种,碳酸亚铁是菱铁矿中的主要成分之一。文章将菱铁矿与Fe2O3作对照,分别进行了静态试验和动态试验,初步探究了时间、温度、pH对砷在菱铁矿中的吸附解析行为的影响。结果表明,Fe2O3的吸附明显比菱铁矿好;pH在2到11范围内变化时,菱铁矿对砷的吸附曲线成M形;温度在20℃到40℃范围内变化时,菱铁矿对砷的吸附没有明显的变化;随着时间的变化,在前8个小时内,菱铁矿对砷的吸附速度较快,8小时之后,吸附曲线趋于平缓,说明最佳吸附时间是8小时。在解析实验中,在0.01 mol/L到0.5 mol/L范围内,随着NaOH浓度的增大,砷的解析率逐渐增大,其中在0.5 mol/L的时候达到最大,为50%。 Arsenic contamination of groundwater pollution is a serious threat. Siderite is a kind of arsenic adsorption material, and FeCO3 is one of the major components. We conducted a static and dynamic experiments, and studied the effect of the time, temperature and pH on the adsorptive-desorptive behaviour of Arsenic on siderite. The results show that, Fe2O3 adsorption was significantly better than that of siderite. When pH value changes in the range of 2 to 11, siderite adsorption of arsenic is in the M-shaped curve; when temperature changes in the range of 20℃℃ to 40 ℃ , the adsorption of arsenic on siderite did not change significantly. Over time, in the first 8 hours, siderite fast adsorptived arsenic, and 8 hours later, the adsorption curve leveled off, indicating that the optimum adsorption time is 8 hours. In the desorption study, when NaOH concentrationin changes in the range of O.01 to 0.5 mol/L, arsenic in the resolution increased with the increase of NaOH concentration, which in 0.5mol/L, it reached at the maximum of 50 %. Arsenic adsorption in siderite could be better fitted by Freundlich equation.
出处 《广东化工》 CAS 2014年第7期14-16,共3页 Guangdong Chemical Industry
关键词 吸附 解吸 菱铁矿 arsenic: adsorption: desorption: siderite
  • 相关文献

参考文献12

  • 1Pontius F W,Brown K G,Chen C J.Health implications of arsenic in drinking water[J] .Journal of the American Water Works Association,1994,86(9):52-63.
  • 2Hughes M F.Arsenic toxicity and potential mechanisms of action[J] .Toxicology Letters,2002,133(1):1-16.
  • 3Welch A H,Westjohn D B,Helsel D R,et al.Arsenic in Ground water of the United States:Occurrence and geochemistry[J] .Groundwater,2000,38(4):589-604.
  • 4Nordstrom D K.Worldwide occurrences of arsenic in groundwater[J] .Science,2002,5576(296):2143-2145.
  • 5Azcue J M,Nriagu J O.Role of sediment porewater in the cycling of arsenic in a mine-polluted lake[J] .Environmental International,1994,20(4):517-527.
  • 6Leonard A Arsenic,Weinheim,Germany,in:Merian.(Eds.),Metals and their Compounds in the Environments,Occurrence,Analysis,and Biological Relevance,Second VCH,1991:751-774.
  • 7Lu F J,Hsieh H P,Yamauchi H,et al.Fluorescent humic substance-arsenic complex in well water in areas where blackfoot disease is endemic in Taiwan[J] .Applied OrganometallicChemistry,1991,5(6):507-512.
  • 8Fields K,Chen A,Wang L L.Arsenic removal from drinking water by iron removal plants.National Risk Management Laboratory,Office of Research and Development,USEPAEPA/600/R-00/086,2000.
  • 9Bissen M,Frimmel F H.Arsenic-a review.part Ⅱ:oxidation of arsenic and its removal in water treatment[J] .Acta Hydroehimica et Hydrobiol,2003,31(2):97-107.
  • 10叶瑛,季珊珊,邬黛黛,李俊,张维睿.针铁矿及其前体吸附亚砷酸根离子的反应及预处理方法的影响[J].岩石矿物学杂志,2005,24(6):551-555. 被引量:10

二级参考文献58

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部