期刊文献+

基于K-means聚类算法的沥青烟电除尘器火花分析

Discharge Analysis of Asphalt Fume ESP Based on K-means Cluster Algorithm
下载PDF
导出
摘要 为了保证沥青烟电除尘器的除尘效率、降低除尘设备的火灾风险,采用了K-means聚类的方法分析ESP放电信号。首先将ESP伏安特性曲线的二维空间进行了分割,确定了不同运行状态与聚类中心的关系,然后使用K-means聚类算法计算其聚类中心,最后根据当前ESP输入参数与各个聚类中心欧氏距离的关系,从而判断出ESP是否处于火花放电状态。仿真结果表明该方法可以准确地判断出所有火花放电信号。 In order to gumantee the cleaning eficieney of asphalt fume electrostatic precipitator and reduce fire risks of the equipment, the Kmeans duster algorithm is introduced to analyze the discharge signal of ESP. The 2 dimension space of ESP voltage-ampere characteristics is divided into four parts and each part has a cluster center. The center is mapped with the ESP operation status and it can be calculated by K- means algorithm. The ESP status can be detemained according to the Euclidean distances between input parameters and various clustering centers. The simulation result indicates that the method can accurately estimate ESP discharge signals.
出处 《工业安全与环保》 北大核心 2014年第4期31-33,共3页 Industrial Safety and Environmental Protection
基金 甘肃省青年科技基金(1208RJYA071)
关键词 电除尘器 沥青烟气 放电信号 K—means聚类算法 electrostatic precipitator asphalt fume disehargo signal K- means cluster algorithm
  • 相关文献

参考文献8

二级参考文献32

共引文献200

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部