摘要
针对高维目标问题中非支配解数量随目标数量增加而剧增的问题,提出一种基于目标相关性信息的降维方法.该方法利用非支配解的目标值分析目标之间的相关性,对正相关较强的目标进行合并,从而降低目标数量,使部分非支配解之间产生支配关系,达到减少非支配解数量的目的.该方法可与基于Pareto支配的演化算法结合.实验结果表明,结合该目标降维方法的演化算法可以取得收敛性更好的结果.
Aiming at the problem caused by ever-increasing non-dominated solutions with the increasing in the number of objectives,an objective reduction method based on objective correlation is proposed.The method employs the objective values of non-dominated solutions to combine the high-positively correlative objectives,and accordingly reduces the number of objectives.The reduced objective set makes some former non-dominated solutions dominated by some others and thus the number of non-dominated solutions decreases.Then,the objective reduction method can be integrated into Pareto-based evolutionary algorithms.The experiments show that evolutionary algorithms combined with the objective reduction method can converge better.
出处
《武汉大学学报(理学版)》
CAS
CSCD
北大核心
2014年第2期151-159,共9页
Journal of Wuhan University:Natural Science Edition
基金
国家自然科学青年基金项目(61305079)
福建省自然科学基金项目(2012J01248)
福建省中青年教师教育科研项目(A类)(JA13400)
广东省省部产学研结合专项(2011B090400477)
珠海市产学研合作专项资金(2011A050101005
2012D0501990016)
珠海市重点实验室科技攻关项目(2012D0501990026)
教育部人文社科青年基金(12YJCZH084)
河北省教育厅科研项目(QN20131053)
河北省科技计划项目(13210331)
河北青年拔尖人才支持计划(冀字[2013]17号)
关键词
高维目标
演化算法
非支配解
相关性
降维
many-objective
evolutionary algorithms
non-dominated solution
correlation
dimension reduction