期刊文献+

基于目标相关性的一种高维目标演化算法

A Many-Objective Evolutionary Algorithm Based on Objective Correlation
原文传递
导出
摘要 针对高维目标问题中非支配解数量随目标数量增加而剧增的问题,提出一种基于目标相关性信息的降维方法.该方法利用非支配解的目标值分析目标之间的相关性,对正相关较强的目标进行合并,从而降低目标数量,使部分非支配解之间产生支配关系,达到减少非支配解数量的目的.该方法可与基于Pareto支配的演化算法结合.实验结果表明,结合该目标降维方法的演化算法可以取得收敛性更好的结果. Aiming at the problem caused by ever-increasing non-dominated solutions with the increasing in the number of objectives,an objective reduction method based on objective correlation is proposed.The method employs the objective values of non-dominated solutions to combine the high-positively correlative objectives,and accordingly reduces the number of objectives.The reduced objective set makes some former non-dominated solutions dominated by some others and thus the number of non-dominated solutions decreases.Then,the objective reduction method can be integrated into Pareto-based evolutionary algorithms.The experiments show that evolutionary algorithms combined with the objective reduction method can converge better.
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2014年第2期151-159,共9页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学青年基金项目(61305079) 福建省自然科学基金项目(2012J01248) 福建省中青年教师教育科研项目(A类)(JA13400) 广东省省部产学研结合专项(2011B090400477) 珠海市产学研合作专项资金(2011A050101005 2012D0501990016) 珠海市重点实验室科技攻关项目(2012D0501990026) 教育部人文社科青年基金(12YJCZH084) 河北省教育厅科研项目(QN20131053) 河北省科技计划项目(13210331) 河北青年拔尖人才支持计划(冀字[2013]17号)
关键词 高维目标 演化算法 非支配解 相关性 降维 many-objective evolutionary algorithms non-dominated solution correlation dimension reduction
  • 相关文献

参考文献10

  • 1Deb K,Pratap A,Agarwal S,etal.A fast and elitistmultiobjective genetic algorithm:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation,2002 6(2):182-197.
  • 2Ziztler E,Laumanns M,Thiele L.SPEA2:Impro-ving the Strength Pareto Evolutionary Algorithm forMultiobjective Optimization [R].Zurich:ComputerEngineering and Communication Networks Lab(TLK),Swiss Federal Institute of Technology,2001.
  • 3Farina M,Amato P.On the optimal solution definitionfor many-criteria optimization problems [DB/OL].[2013-05-07].//http://vuenku.baidu.com/view/6368a5c489e6172<636793.html.
  • 4Purshouse R C,Fleming P J.Evolutionary many-ob-jective optimisation j An exploratory analysis [OB/OL].[2013-04-05].http://citeseerx.ist.psu.edu/viewdoc/doumload? doi = 10.1.1.81.6778&rep=rep 1 & type = pdf.
  • 5Biesiada J,Duch,W.Feature selection for high-di-mensional data-A Pearson redundancy based filter[DB/OL].[2013-01-30].http://link.springer.com/chapter/10.1007%2F978-3-540-75175-5_30 # pagE-1.
  • 6Paninski L.Estimation of entropy and mutual informa-tion[J].Neural Computation,2003,15(6):1191-1253.
  • 7Kukkonen S,Lampinen J.Ranking-dominance andmany-objective optimization [C]//Proceedings of theIEEE Congress on Evolutionary Computation(CEC2007):Piscataway:IEEE Press,2007,3983-3990.
  • 8XieDT,Ding L X,HuYR,et al.A multi-algorithmbalancing convergence and diversity for multi-objectiveoptimization[J].Journal of In formation Science andEngineering,2013,29(5):811-833.
  • 9Pan Z,Rust A G,Bolouri H.Image redundancy reduc-tion for neural network classification using discrete co-sine transforms [DB/OL].[2013-02-05].http://vuen-ku.baidu.com/viezv/2f01e71da76eS8fafab003f9.html.
  • 10Deb K.Multi-Objective Optimization Using Evolu-tionary AlgorithmsNew York:John Wiley andSons,2001.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部