期刊文献+

EERSFS:高能效的混杂RFID数据冗余过滤方法 被引量:1

EERSFS:an energy efficient hybrid-RFID data filtering method
下载PDF
导出
摘要 为克服无线传感技术和射频识别(RFID)技术在物联网中应用上的缺陷,针对由无线传感和RFID结合所形成的混杂RFID网络,引入簇的概念,提出了一种基于簇结构的高能效的射频识别和传感数据过滤模型(EERSFS),此模型通过冗余的分层定义,使冗余数据在冗余源附近得到过滤处理。实验证明,该过滤方法能有效降低网络中的冗余数据量和网络节点的能量消耗,延长无线传感网络的寿命。 To improve the applications of the wireless sensing and radio frequency identification(RFID) in the Internet of things,the concept of cluster was introduced into the hybrid RFID network formed by the combination of wireless sensing and RFID, and an energy-efficient RFID and sensor data filtering scheme (EERSFS)for the hybrid RFID network was put forward. The EERSFS defines the redundancy hierarchically, and makes redundant data filtered near by the redundant sources. The results of the simulation experiments show that the proposed method can reduce the amount of redundant data and the energy consumption in the network, and prolong the life cycle of wireless sen- sor networks.
出处 《高技术通讯》 CAS CSCD 北大核心 2014年第3期263-272,共10页 Chinese High Technology Letters
基金 国家自然科学基金(61170035) 江苏省自然科学基金重大专项(BK2011022) 江苏省自然科学基金(BK2011702) 中国博士后科学基金(200902517) 中央高校基本科研业务费专项资金(30920130112006) 南京市科技计划(020142010)资助项目
关键词 无线传感 混杂RFID 冗余过滤 wireless sensing, hybrid RFID, redundant filtration
  • 相关文献

参考文献16

  • 1ITU Internet Reports 2005: The Internet of Things, Geni~ve ,ITU ,2005. http ://www. itu. int/osg/spu/ pub- lications/intemetofthings/, 2010.
  • 2Lopez T S, Kim D, Canepa G H, et al. Integrating wireless sensors and RFID tags into energy-efficient and dynamic context networks. The Computer Journal, 2005,52 : 240- 267.
  • 3McKelvin M L Jr, Williams M L, Berry N M. Integrated Radio Frequency identification and Wireless Sensor Net- work architecture for automated inventory management and tracking applications. In: Proceedings of the 2005 Conference on Diversity in Computing, Albuquerque, USA ,2005.44-47.
  • 4Zhang L, Wang Z. Integration of RFID into wireless sensor networks : architectures, opportunities and challenging problems. In:Proceedings of the 5fth International Con- ference on Grid and Cooperative Computing Workshops ( GCCW 06), Changsha, China,2006.463-469.
  • 5Carbunar B, Ramanathan M K, Koyuturk M, et al. Redun- dant reader elimination in RFID systems. In Proceedings of the 2nd Annual IEEE Communications Society Con- ference on Sensor and Ad Hoc Communications and Net- works, Santa Clara, USA, 2005.176-184.
  • 6Bashir A K, Lira S J, Hussain C S, et al. Energy efficient in-network RFID data filtering scheme in Wireless Sen- sor Networks. Sensors, 2011,11:7004-7021.
  • 7Tran T, SuRon C, Cocci R, et al. Probabilistic Inference over RFID streams in mobile environments. In:Proceed- ings of IEEE 25th International Conference on Data En- gineering, Shanghai, China,2008. 1096-1107.
  • 8Chen H Q, Ku W S, Wang H X, et al. Leveraging spatio- temporal redundancy for RFID data cleansing. In:Pro- ceedings of the 2010 ACM SIGMOD International Con- ference on Management of Data, New York, USA,2010. 51-62.
  • 9Jeffery S R, Garofalakis hi, Franklin M J. Adaptive clean- ing for RFID data streams. In : Proceedings of the 32nd International Conference on Very Large Data Bases VLDB, Seoul, Korea, 2006. 163-174.
  • 10Wang F, Liu P. Temporal management of RFID data. In: Proceedings of the 31 st International Conference on Very Large Data Bases, Trondheim, Norway,2005.1128-1139.

二级参考文献11

共引文献69

同被引文献11

引证文献1

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部