期刊文献+

A New Class of Antimagic Join Graphs 被引量:1

A New Class of Antimagic Join Graphs
原文传递
导出
摘要 A labelingfof a graph G is a bijection from its edge set E(G) to the set {1,2,...,|E(G)|}, which is antimagic if for any distinct vertices x and y, the sum of the labels on edges incident to x is different from the sum of the labels on edges incident to y. A graph G is antimagic if G has anfwhich is antimagic. Hartsfield and Ringel conjectured in 1990 that every connected graph other than K2 is antimagic. In this paper, we show that if G1 is an m-vertex graph with maximum degree at most 6r+ 1, and G2 is an n-vertex (2r)-regular graph (m≥n≥3), then the join graph G1 v G2 is antimagic. A labelingfof a graph G is a bijection from its edge set E(G) to the set {1,2,...,|E(G)|}, which is antimagic if for any distinct vertices x and y, the sum of the labels on edges incident to x is different from the sum of the labels on edges incident to y. A graph G is antimagic if G has anfwhich is antimagic. Hartsfield and Ringel conjectured in 1990 that every connected graph other than K2 is antimagic. In this paper, we show that if G1 is an m-vertex graph with maximum degree at most 6r+ 1, and G2 is an n-vertex (2r)-regular graph (m≥n≥3), then the join graph G1 v G2 is antimagic.
出处 《Wuhan University Journal of Natural Sciences》 CAS 2014年第2期153-155,共3页 武汉大学学报(自然科学英文版)
基金 Supported by the National Natural Science Foundation of China(11371052,11271267,10971144,11101020) the Natural Science Foundation of Beijing(1102015) the Fundamental Research Funds for the Central Univer sities(2011B019,3142013104)
关键词 antimagic labeling: loin raohs antimagic labeling: loin raohs
  • 相关文献

参考文献12

  • 1Hartsfield N, Ringel G. Pearls in Graph Theory [M]. Mineola, New York: Academic Press, 1990.
  • 2Tao WANG,Ming Ju LIU,De Ming LI.A Class of Antimagic Join Graphs[J].Acta Mathematica Sinica,English Series,2013,29(5):1019-1026. 被引量:4
  • 3Wang T, Li D M, Wang Q. Some classes ofantimagic graphs with regular subgraphs [J]. Ars Combinatoria, 2013, 111: 241-250.
  • 4Gray I D. Vertex-magic total labelings of regular graphs [J]. Discrete Mathematics, 2007, 21: 170-177.
  • 5Cranston D W. Regular bipartite graphs are antimagic [J]. Graph Theory, 2009, 60: 173-182.
  • 6Cheng Y X. A new class of antimagic Cartesian product graphs [J]. Discrete Mathematics, 2008, 308:6441-6448.
  • 7Hefetz D. Antimagic graphs via the combinatorial NullStel- lenSatz [J]. Graph Theory, 2005, 50: 263-272.
  • 8Lo S, On edge-graceful labelings of graphs [J]. Congress Numer, 1985, 50: 231-241.
  • 9Gray I D. Vertex-magic total labelings of regular graphs [J]. Discrete Mathematics, 2007, 21: 170-177.
  • 10Gray I D, Macdougall J A. Vertex-magic total labelings of regular Graphs II [J]. Discrete Mathematics, 2009, 309: 5986-5999.

二级参考文献17

  • 1Hartsfield N, Ringel G. Pearls in Graph Theory [M]. Mineola, New York: Academic Press, 1990.
  • 2Alon N, Kaplan G, Lev A, et al. Dense graphs are antimagic [J]. Graph Theory, 2004, 47: 297-309.
  • 3Cranstin D W. Regular bipartite graphs are antimagic [J]. Graph Theory, 2009, 60: 173-182.
  • 4Cheng Yongxi. A new class of antimagic Cartesian product graphs [J]. Discrete Mathematics, 2008, 308: 6441-6448.
  • 5Dan Hefetz. Antimagic graphs via the combinatorial null- stellensatz [J]. Graph Theory, 2005, 50: 263-272.
  • 6Lo S. On edge-graceful labelings of graphs [J]. Congress Numer, 1985, 50: 231-241.
  • 7Gray I D. Vertex-magic total labelings of regular Graphs [J]. Discrete Mathematics, 2007, 21:170-177.
  • 8Gray I D, Macdougall J A. Vertex-magic total labelings of regular Graphs Ⅱ [J]. Discrete Mathematics, 2009, 309: 5986-5999.
  • 9West D B. Introduction to Graphs Theory [M]. Second Edi- tion. Upper Saddle River N J: Prentice Hall, 2001.
  • 10Pasles P C. Benjamin Franklin's Numbers [M]. Princeton Princeton Uni Press, 2008.

共引文献3

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部