Multiple Positive Solutions for Semilinear Elliptic Equations Involving Subcritical Nonlinearities in RN
Multiple Positive Solutions for Semilinear Elliptic Equations Involving Subcritical Nonlinearities in RN
摘要
In this paper, we study how the shape of the graph of a(z) affects on the number of positive solutions of -△v+μb(z)v=a(z)vp-1+λh(z)vq-1,inRN.(0.1) We prove for large enough λ,μ〉 0, there exist at least k+ 1 positive solutions of the this semilinear elliptic equations where 1 ≤ q 〈 2 〈 p 〈 2* = 2N/(N-2) forN ≥ 3.
参考文献9
-
1Lin H. L., Multiple positive solutions of semilinear elliptic equations involving concave and convex nonlinearities in RIN. Boundary value problems 2012 (2012), 24.
-
2Ambrosetti A., Brezis H., Cerami G., Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122 (1994), 519 -543.
-
3Wu T. F., On semilinear elliptic equations involving concave-convex nonlinearities and sign- changing weight function. J. Math. Anal. Appl. 318 (2006), 253-270.
-
4Hsu T. S., Lin H. L., Four positive solutions of semilinear elliptic equations involving con- cave and convex nonlinearities in N. j. Math. Anal. Appl. 365 (2010), 758-775.
-
5Tarantello G., On nonhomogeneous elliptic involving critical Sobolev exponent. Ann. Inst. H. Poincare Anal. Non Lmeaire 9 (1992), 281-304.
-
6Brown K. J., Zhang Y., The Nehari manifold for a semilinear elliptic equation with a sign- changing weight function. J. Diff. Equ. 193 (2003), 481-499.
-
7Wang H. C. Palais-Smale approaches to semilinear elliptic equations in unbounded. Electron. J. Diff. Equ. Monogragh 0 6 (2004), 142.
-
8Cao D. Ivi., Zhou H. S., Multiple positive solutions of nonhomogeneous semilinear elliptic equations in ]RN. Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), 443-463.
-
9Miotto M. L., O. H, Multiple positive solutions for semilinear Dirchlet problems with sign- changing weight function in infinite strip domains. Nonlinear Anal. 71 (2009), 3434-3447.
-
1唐春雷.AN EXISTENCE THEOREM OF SOLUTIONS FOR SEMILINEAR ELLIPTIC EQUATIONS ON R^N[J].Acta Mathematica Scientia,1999,19(3):289-292. 被引量:3
-
2杨海涛,陈祖墀.ON SEMILINEAR ELLIPTIC EQUATIONS WITH CONCAVE AND CONVEX NONLINEARITIES IN R^N[J].Acta Mathematica Scientia,2000,20(2):181-188.
-
3莫嘉琪,许玉兴.THE SINGULARLY PERTURBED BOUNDARY VALUE PROBLEMS FOR HIGHER ORDER SEMILINEAR ELLIPTIC EQUATIONS[J].Acta Mathematica Scientia,1997,17(1):44-50. 被引量:3
-
4曾有栋,陈祖墀,等.SEMILINEAR ELLIPTIC EQUATIONS WITH SINGULARITY ON THE BOUNDARY[J].Journal of Partial Differential Equations,2002,15(1):28-34.
-
5YANGHAITAO WUSHAOPING.ON SEMILINEAR ELLIPTIC EQUATIONS WITH RNSUBLINEAR AND SUPERLINEAR NONLINEARITIES IN[J].Applied Mathematics(A Journal of Chinese Universities),1997,12(1):67-76. 被引量:1
-
6邓耀华,李树荣.REGULARITY OF WEAK SOLUTIONS FOR SEMILINEAR ELLIPTIC EQUATIONS[J].Chinese Science Bulletin,1986,31(8):567-568.
-
7Ruichang PEI,Jihui ZHANG.Existence of three nontrivial solutions for semilinear elliptic equations on RN[J].Frontiers of Mathematics in China,2016,11(3):723-735. 被引量:1
-
8邓耀华,沈尧天,李树荣.ON THE EXISTENCE OF INFINITELY MANY SOLUTIONS OF THE DIRICHLET PROBLEM FOR SEMILINEAR ELLIPTIC EQUATIONS[J].Chinese Science Bulletin,1985,30(7):853-857.
-
9张志涛.A PRIORI ESTIMATE AND EXISTENCE OFPOSITIVE SOLUTIONS FOR SYSTEM OFSEMILINEAR ELLIPTIC EQUATIONS[J].Annals of Differential Equations,1999,15(3):327-338.
-
10陈化,贺振亚.SEMILINEAR ELLIPTIC EQUATIONS ON FRACTAL SETS[J].Acta Mathematica Scientia,2009,29(2):232-242.