期刊文献+

物理摆的多吸引子混沌状态实现与理论模拟 被引量:2

Implementation and simulation of chaotic behavior of multiple-attractor generated by a physical pendulum
下载PDF
导出
摘要 本文首先利用一个物理摆实现了多吸引子混沌现象 ,并对产生混沌的关键因素及相图进行了分析 .然后从力学原理出发用计算机对该系统进行了模拟 ,得到了与实验相图符合得很好的理论模拟相图 ,并在模拟相图中验证了混沌对初始状态的敏感性 . An experiment about chaotic behavior of multiple\|attractor generated by a physical pendulum was described and the experimental phase chart and the important parameters to generate chaotic behavior were analyzed. Then based on Newton's equation of motion the theoretical phase chart with computer simulation is accordant with the experimental one very well. The susceptibility for final state to its initial condition was also analyzed in the simulative phase chart.
出处 《浙江大学学报(理学版)》 CAS CSCD 2001年第1期42-45,共4页 Journal of Zhejiang University(Science Edition)
基金 浙江省自然科学基金资助项目! (1990 31)
关键词 计算机模拟 物理摆 多吸引子混沌 模拟相图 相空间轨道 角位移 角速度 chaos computer simulation physical pendulum
  • 相关文献

参考文献3

  • 1郝柏林.分叉、混沌、奇异吸引子、湍流及其它[J].物理学进展,1983,3(3):335-335.
  • 2吴祥兴,混沌学导论,1996年
  • 3郝柏林,物理学进展,1983年,3卷,3期,335页

同被引文献20

  • 1李冬鹏,王明美,宋影,孙茹茹.应用于大学物理教学的MATLAB图示模拟的示例[J].合肥师范学院学报,2012,30(6):41-44. 被引量:4
  • 2孙萍,熊俊,曹慧贤,李蓉,许成伟.扭摆振动实验[J].物理实验,2006,26(12):3-7. 被引量:9
  • 3何大韧 汪秉宏 汪颖梅 等.非线性动力学引论[M].西安:陕西科学技术出版社,2001.3-4.
  • 4OTT E. Chaos in dynamical systems [M]. Cambridge: Cambridge University Press, 1993:1-22.
  • 5BAKER GREGORY L, BLACKBURN JAMES A. The pendulum a case study in physics [M]. New York: Oxford University Press, 2005: 8-24.
  • 6BATISTA A A, OLIVEIRA F A, NAZARENO H N. Duffing oscillators: control and memory effects [J]. Phys Rev E, 2008, 77: 066216.
  • 7SINGH T U, NANDI A, RAMASWAMY R. Coexisting attractors in periodically modulated logistic maps [J]. Phys Rev E, 2008, 77:066217.
  • 8I.AI Y C, HE D R, JIANG Y M. Basins of attraction in piecewise smooth Hamiltonian systems [J]. Phys Rev E, 2005, 72:025201.
  • 9MALININ S V, CHERNYAK V Y. Classical nonlinear response of a chaotic system I:collective resonances [J]. Phys Rev E, 2008, 77:056201.
  • 10der SANDE G V, SORIANO M C, FISCHER I, et al. Dynamics, correlation scaling, and synchronization behavior in rings of delay-coupled oscillators [J]. Phys Rev E, 2008, 77: 055202.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部