期刊文献+

呼吸运动对锥形束CT确定靶区的影响

Effect of Respiratory Movement on Cone Beam Computed Tomography Images
原文传递
导出
摘要 肺部肿瘤会随着人的呼吸运动而运动,为研究肿瘤运动周期内运动时段的不同对锥形束CT(CBCT)确定肿瘤靶区的影响,应用CIRS008胸部运动模体,取直径分别为1cm和3cm的球形靶模拟肺部肿瘤的正弦运动,然后在振幅不变的情况下改变靶运动在近呼气端与近吸气端时间的比值(E/I)进行CBCT扫描。提取靶运动方向中心线上每个像素的CT值分析图像中靶区对比度的变化,应用区域生长的方法自动勾画靶区,并与根据小球运动轨迹计算的运动体积进行比较。结果显示随着E/I的增大,近呼气端对比度升高而近吸气端对比度降低。勾画的靶区体积随着E/I的增大而减小,当E/I=4,振幅A=1cm时,直径分别为1cm和3cm的小球,体积分别减小了48.2%和22.7%;研究表明E/I增大时CBCT不能完整的反映靶的运动范围,CBCT可能会低估肺部肿瘤的内靶区。 To investigate the impact of respiratory movement to determine the target volume on cone beam CT (CBCT) for lung tumor,we used CIRS dynamic thorax phantom (Model-CIRS008) to simulate the sinusoidal motion of lung tumor. With a constant amplitude, the ratio of the time of near-end-expiratory and near-end- inspiratory (E/ I) changed when it was scanned with CBCT. We analyzed the contrast changes of target by extracting the CT value of each pixel on the center line of the target movement direction. The targets were contoured with region growing method and compared with the motion volume generated by the tumor trajectory method. The result showed that the contrast of near-end-expiratory increased and the contrast of near-end-inspiratory decreased with increasing E/I. The contoured volume generated by region growing method decreased with increasing E/I. When E/I=4, the amplitude A= 1 cm, diameter of 1 cm and 3 cm target volumes were reduced by 48.2% and 22.7%. The study showed that CBCT was not suitable to be used to accurately determine the range of lung tumor movement. The internal target volume (ITV) may be underestimated in CBCT images.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2014年第2期314-318,共5页 Journal of Biomedical Engineering
关键词 锥形束CT 呼吸运动 内靶区 图像引导放射治疗 eone beam computed tomography respiratory movement internal target image guided radiation therapy
  • 相关文献

参考文献12

  • 1MASI L. CASAMASSIMA F. MENICHELLI C. et al. Online image guidance for frameless stereotactic radiotherapy of lung malignancies by cone beam CT: comparison between target localization and alignment on bony anatomy[J]. Acta Oncol. 2008. 47(7): 1422-1431.
  • 2FELDKAMP LA. DAVIS L C. KRESSJ W. Practical conebeam algorithm[J].J Opt Soc Am A Opt Image Sci Vis. 1984. 1(6): 612-619.
  • 3WANG z. WU QJ. MARKS L B. et al. Cone-beam CT localization of internal target volumes for stereotactic body radiotherapy of lung lesions[J]. IntJ Radiat Oncol BioI Phys , 2007. 69(S), 1618-1624.
  • 4International Commission on Radiation Units and Measurements nCRU). Report 62: Prescribing. recording and reporting photon beam therapy (supplement to ICRU report 50)[R]. Bethesda: ICRU Publications. 1999.
  • 5RUAN D. FESSLERJ A. BALTERJ M. et al. Real-time profiling of respiratory motion: baseline drift. frequency variation and fundamental pattern change[J]. Phys Med Bioi. 2009. 54(15): 4777-4792.
  • 6LUJAN A E. LARSEN E W. BALTERJ M. et al. A method for incorporating organ motion due to breathing into 3D dose calculations[J]. Med Phys , 1999. 26(5): 715-720.
  • 7汪隽琦,徐志勇,胡伟刚,李龙根,彭佳元.千伏级锥形束CT图像质量和稳定性及三维影像体积重建精度研究[J].中华放射肿瘤学杂志,2012,21(2):176-180. 被引量:9
  • 8SWEENEY R A.SEUBERT B. STARK S. et al. Accuracy and inter-observer variability of 3D versus 4D cone-beam CT based image-guidance in SBRT for lung tumorsl L'Ol.]. Radiat Oncol , 2012. 7: 81 (2012-06-08)[2012-12-21J. http:// www.ro-journal.com/content/pdf/1748-717X-7-81. pdf.
  • 9VERGALASOVA I. MAURERJ. YIN F F. Potential un- derestimation of the internal target volume (lTV) from freebreathing CBCT[n. Med Phys , 2011. 38(8): 4689-4699.
  • 10SONK[J J. ZUP L. R[MEUER P. et al. Respiratory correlated cone beam CT[J]. Med Phys , 2006. 32 (4): 1176- 1186.

二级参考文献14

  • 1戴建荣,胡逸民.图像引导放疗的实现方式[J].中华放射肿瘤学杂志,2006,15(2):132-135. 被引量:184
  • 2Van't Veld AA, Bruinvis IA. Influence of shape on the accuracy of grid-based volume computations. Med Phys, 1995,22: 1377- 1385.
  • 3Palomo JM, Subramanyan K, Hans M, et al. Influence of mA settings and a copper filter in CBCT image resolution. Int J Comput Assist Radiol Surg,2006,1:391-393.
  • 4Ning R, Tang X, Conover D. X-ray scatter correction algorithm for cone beam CT imaging. Med Phys,2004,31:1195-1202.
  • 5Spies L, Ebcrt M, Groh BA, et al. Correction of scatter in megavoltage cone beam CT. Phys Med Biol,2001,46 :821-833.
  • 6Siewerdsen JH, Daly MJ, Bakhtiar B, et al. A simple, direct method for X-ray scatter estimation and correction in digital radiography and cone-beam CT. Med Phys,2006,33:187-197.
  • 7Mail N, Moseley DJ, Siewerdsen JH, et al. The influence of bowtie filtration on cone-beam CT image quality. Med Phys ,2009, 36:22-32.
  • 8Bissonnette JP, Moseley DJ, Jaffray DA. A quality assurance program for image quality of cone-beam CT guidance in radiation therapy. Med Phys,2008,35:1807-1815.
  • 9American association of physicists in medicine. AAPM Report No. 39 Specification and acceptance testing for computed tomopraphy scanners. New Yok: American association of physicists in medicine, 1993 : 26 -31.
  • 10Lehmann J, Perks J, Semon S, et al. Commissioning experience with cone-beam computed tomography for image-guided radiation therapy. J Appl Clin Med Phys,2007 ,8 :21-36.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部