期刊文献+

The Pickands' Estimator of the Negative Extreme-value Index 被引量:5

The Pickands' Estimator of the Negative Extreme-value Index
下载PDF
导出
摘要 提出一类极值指数为负时的相似于Pickand’s型的新的极值指数估计量 。 It is proposed that a new estimator of the extreme\|value index (when it is negative) that is similar in form to the Pickands' estimator.Its consistency and asymptotic distribution is established.
出处 《北京大学学报(自然科学版)》 CAS CSCD 北大核心 2001年第1期12-19,共8页 Acta Scientiarum Naturalium Universitatis Pekinensis
关键词 渐近分布 相合性 极值批数 负极值指标 PICKANDS估计 估计量 asymptotic distribution consistency extreme\|value index
  • 相关文献

参考文献1

  • 1Cheng Shihong,Limit theorems in probability,1999年

同被引文献34

  • 1祁永成,程士宏.CONVERGENCE OF PICKANDS-TYPE ESTIMATORS[J].Chinese Science Bulletin,1992,37(17):1409-1413. 被引量:3
  • 2潘家柱.Pickands估计的强收敛速度[J].北京大学学报(自然科学版),1995,31(3):291-296. 被引量:1
  • 3Hill B M. A Simple General Approach to Inference About the Tail of a Distribution [J]. Ann Statistics, 1975, 3(5): 1163 -- 1174.
  • 4Piekands J. Statistical Inference Using Extreme Order Statictics [J]. Ann Statist, 1975, 3(1) : 119 -- 131.
  • 5De Haan L, Resnick S I. A Simple Asymptotic Estimate for the Index of a Stable Distribution [J]. J Roy Statist Soc Ser B, 1980, 42(1): 83-87.
  • 6Hall P. On Some Simple Estimates of an Exponent of Regular Variation [J]. J Roy Statist Soc Ser B, 1982, 42(1): 37- 42.
  • 7Mason D M. Laws of Large Numbers for Sums of Extreme Values [J]. Ann Probab, 1982, 10(3) : 754 -- 764.
  • 8Davis R, Resniek S I. Tail Estimates Motivated by Extreme Value Theory [J]. Ann Statist, 1984, 12(4): 1467 - 1487.
  • 9Hall P, Welsh A H. Adaptive Estimate of Parameters of Regular Variation [J]. Ann Statist, 1985, 13(1): 331 -341.
  • 10John Segers. Generalized Pickands Estimators for the Extreme Value Index [J]. Statist Plann Inference, 2005, 128(2): 381 - 396.

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部