期刊文献+

扩散模型复合分位回归估计的渐近正态性 被引量:2

Asymptotic Normality of Composite Quantile Regression Estimation for Diffusion Model
下载PDF
导出
摘要 主要研究扩散模型中漂移函数的复合分位回归估计的渐近正态性.基于离散观测样本,利用复合分位回归的方法得到了漂移参数函数的局部估计量,并证明了估计量的渐近正态性. This paper studies asymptotic normality of the composite quantile regression estimation of the drift function for diffusion model. Based on discretely ohserved sample of the diffusion models, the local estimation of the drift parametric functions are gained by using composite quantile regression method, and the asymptotic normality of the estimation that we pro- posed is verified.
出处 《河南师范大学学报(自然科学版)》 CAS 北大核心 2014年第2期25-28,共4页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金(11171221) 上海市一流学科(系统科学)项目资助(XTKX2012)
关键词 扩散模型 漂移函数 复合分位回归估计 渐近正态性 diffusion model drift function composite quantile regression estimation asymptotic normality
  • 相关文献

参考文献8

  • 1Fan J,Gijbels I.Local Polynomial Medelling and Its Applications[M].London:Chapman and Hall,1996.
  • 2Kai B,Li R,Zou H.Local composite quantile regression smoothing:an efficient and safe alternative to local polynomial regression[J].J R Statist Soc B,2010,72(1):49-69.
  • 3Kai B,Li R,Zou H.New efficient estimation and variable selection methods for semi-parametric varying-coefficient partially linear models[J].Ann Statist,2011,39(1):305-332.
  • 4王艳玲,王继霞.定时截尾下双参数指数模型参数估计的EM算法[J].河南师范大学学报(自然科学版),2012,40(5):28-30. 被引量:3
  • 5冯云芝,张俊娜,冯乃勤.基于参数校正的离焦图像高斯核估计[J].河南师范大学学报(自然科学版),2013,41(4):149-152. 被引量:4
  • 6Knight K.Limiting distributions for L1regression estimators under general conditions[J].Ann Statist,1998,26(2):755-770.
  • 7Jiang,R,Zhou,Z,Qian W,et al.Single-index composite quantile regression[J].J Korean Statistical Society,2012,41(3):323-332.
  • 8Pollard D.Asymptotics for least absolute deviation regression estimations[J].Econometric Theory,1991,7(2):186-199.

二级参考文献15

  • 1郑楚君,李榕,常鸿森.离焦模糊数字图像的Wiener滤波频域复原[J].激光杂志,2004,25(5):57-58. 被引量:27
  • 2王炳兴,王玲玲.定时截尾下指数分布的修正最大似然估计[J].高校应用数学学报(A辑),1995,10(3):295-302. 被引量:12
  • 3王玲玲,王炳兴.无失效数据的统计分析—修正似然函数方法[J].数理统计与应用概率,1996,11(1):64-70. 被引量:57
  • 4Little R J A,Rubin D R.Statistical Analysis with Missing Data[M].New York:Wiley,1987.
  • 5Shi N Z,Zhong S R,Guo J H.The restricted EM algorithm under inequality restrictions on the parameters[J].Journal of Multivariate A-nalysis,2005,92:53-76.
  • 6DEMPSTER A,LAIRD N,RUBIN D.Maximum likelihood from incomplete data via the EM algorithm[J].Journal of the Royal StatisticalSer B,1977,39:1-38.
  • 7Zhou Q,Yan G Z,Wang W X. Parameter estimation for blur image combining defocus and motion blur using cepstrum analysis[J]. Jour- nal of Shanghai J iaotong University : Sceenee, 2007,12E(6) : 700-706.
  • 8Elder J H, Zucker S W. Local scale control for edge detection and blur estimation[J]. IEEE Transactions onPattern Analysis and Ma- chine Intelligence, 1998,20(7) : 699-716.
  • 9Bae S, Durand F. Defocus magnification[J]. Eurographics, 2007,26 : 571-579.
  • 10Liang Min,Zhu Hong,Zhang Xin,et al. A new restoration scheme for defocus blurred image using muhiscale decomposition[C]. Proceed- ings of the International Congress on Image and Signal Proeessing,Tianjin,2009.

共引文献5

同被引文献15

  • 1潘婉彬,陶利斌,缪柏其.时间相依利率扩散模型的非参数估计[J].中国管理科学,2006,14(6):1-5. 被引量:5
  • 2Black F, Seholes M. The pricing of options and corporate liabilities[J]. J Polit Economy, 1973,81(3) :637-654.
  • 3Vasicek O A. An equilibrium characterization of the term strueture[J]. J Finan Econom, 1977,5 (1) :177-188.
  • 4Chan K C, Kayolyi G A, Longstaff F A, Sanders A B. An empirical comparison of alternative models of the short-term interest rate[J]. J Finance, 1992,47(3) : 1209-1227.
  • 5Hull J, White A. Pricing interest-rate derivative securities[J]. Rev Finan Stud, 1990,3(4) :573-592.
  • 6Black F, Karasinski P. Bond and option pricing when short rates are lognormal[J]. Financial Analysts Journal, 1991,47 (1) :52-59.
  • 7Fan J, Jiang J, Zhang C, et al. Time-dependent diffusion models for term structure dynamics and the stock price volatility[J].Statistica Sinica, 2003,13 : 965-992.
  • 8Yu Y, Yu K, Wang H, et al. Semiparametric estimation for a class of time-inhomogeneous diffusion processes [J].Statistica Sinica, 2009,19:843-867.
  • 9Stanton R. A nonparametric model of term structure dynamics and the market price of interest rate risk[J]. J Finance, 1997,52(1) : 1973- 2002.
  • 10Yu K, Jones M C. Likelihood-based local linear estimation of the conditional variance function[J]. J Amer Statist Assoc, 2004,99 (1): 139-144.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部