期刊文献+

一类6阶晶格振动方程局部解的存在性

The Local Existence of a Sixth Order Lattice Dynamics Equation
下载PDF
导出
摘要 研究了一类弹性晶体的晶格振动问题,利用Fourier变换把问题转化为与之等价的积分方程.根据KdV方程的Strichartz估计和关于容许对的2个引理,构造了一类辅助空间.对不同的非线性项,相应地改变初值的正则性指标范围,利用压缩映射原理,证明了晶格振动方程Cauchy问题局部解的存在性定理. We study a sixth order lattice dynamics equation. Firstly, we transfer the equation into an integral equation by Fourier transform. Using the Strichartz estimates of the KdV equation and two lemmas of the admissible pairs, we construct some auxiliary spaces. On some assumption on the nonlinearity and the regularity index, the local existence results are proved by the contraction mapping theorem.
出处 《河南师范大学学报(自然科学版)》 CAS 北大核心 2014年第2期33-36,共4页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金(11171266) 河南省科技厅科技攻关项目(132102310326)
关键词 晶格振动方程 STRICHARTZ估计 压缩映射原理 局部解 lattice dynamics equation strichartz estimates contraction mapping theorem local solution
  • 相关文献

参考文献13

  • 1Maugin G A.Nonlinear Waves in Elastic Crystals[M].Oxford:Oxford University Press,1999.
  • 2Christov C I,Maugin G A,Velarde M G.Well-posed Boussinesq paradigm with purely spatial higher-order derivatives[J].Phys Rev E,1996,54:3621-3638.
  • 3Esfahani A,Farah L G.Local well-posedness for the sixth-order Boussinesq equation[J].J Math Anal Appl,2012,385:230-242.
  • 4Esfahani A,Farah L G,Wang H W.Global existence and blow-up for the generalized sixth-order Boussinesq equation[J].Nonlinear Analysis TMA,2012,75:4325-4338.
  • 5Esfahani A,Levandosky S.Stability of solitary waves for the generalized higher-order Boussinesq equation[J].J Dynamics Differential Equations,2012,24:391-425.
  • 6Miao C X,Yuan B Q,Zhang B.Well-posedness of the Cauchy problem for the fractional power dissipative equations[J].Nonlinear Analysis TMA,2008,68(3):461-484.
  • 7Miao C X,Xue L T.Global well-posedness for a modified critical dissipative quasi-geostrophic equation[J].J Differential Equations,2012,252(1):792-818.
  • 8Wang H W,Wang S B.Decay and scattering of small solutions for Rosenau equations[J].Applied Mathematics and Computation,2011,218(1):115-123.
  • 9Wang H W,Esfahani A.Well-posedness for the Cauchy problem associated to a periodic Boussinesq equation[J].Nonlinear Analysis TMA,2013,89:267-275.
  • 10Colliander J,Keel M,Staffilani G,et al.Almost conservation laws and global rough solutions to a nonlinear Schrdinger equation[J].Math Res Lett,2002,9:659-682.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部