期刊文献+

基于颜色和方向特征区域对比度的显著性检测模型

Saliency Detection Model Based on Region Contrast of Color and Orientation
原文传递
导出
摘要 视觉显著性检测是很多计算机视觉任务的重要步骤,提出了一种基于颜色、方向特征和空间位置关系相结合的区域对比显著性检测算法.首先用基于图论的算法将图像分割成若干区域,结合区域间颜色特征和空间对比度计算出颜色显著图.同时采用基于纹理特征的算法分割图像,通过方向特征和空间对比度得到方向显著图.最后将二者结合得到最终显著图.在国际现有公开测试集上进行仿真实验,并与其它显著性检测方法进行对比,检测结果更加准确、合理,证明此算法切实可行. Saliency detection is an important step in many computer vision tasks. A region contrast saliency estimation algorithm based on color and orientation contrast of the segmented regions is proposed. First of all, the input image is segmented into regions using the algorithm of graph-based image segmentation, then define the color saliency for each region as the weighted sum of the region's contrasts to all other regions in the image. Meanwhile, we segment the image into regions using the algorithm of texture segmentation, then compute the orientation saliency for each region as the weighted sum of the region's contrasts to all other regions in the image. Finally, the saliency map of the input image is obtained by combining color saliency map and orientation saliency map, so the salient object is located and extracted. Our algorithm outperformed existing saliency detection methods when evaluated using the publicly available data sets. The results show that the proposed algorithm is more reasonable and effective.
出处 《数学的实践与认识》 CSCD 北大核心 2014年第8期122-130,共9页 Mathematics in Practice and Theory
基金 国家自然科学基金(61071199) 河北省自然科学基金(F2010001297)
关键词 视觉注意 显著度 区域对比 基于图分割 纹理分割 visual attention saliency region contrast graph-based segmentation texturesegmentation
  • 相关文献

参考文献17

  • 1Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, (S0162-8828), 1998, 20(11): 1254-1259.
  • 2Itti L, Koch C. Feature combination strategies for saliency based visual attention systems [J]. Journal of Electronic imaging(S0277-786X), 2001, 10(1): 161-169.
  • 3Achanta R, Siisstrunk S. Saliency detection using maximum symmetric surround[C]//Proceedings of IEEE International Conference on Image Processing, 2010: 2653-2656.
  • 4Lingyun Zhang, Tim K. Marks, Honghao Shan, et al. SUN: A bayesian framework for saliency using natural statistics[J]. Journal of Vision(S1534-7362), 2008, 8(7): 32.
  • 5Hae Jong Seo, Peyman Milanfar. Nonparametric bottom-up saliency detection by self-resemblance[C] //IEEE Conference on Computer Vision and Pattern Recognition, 2009: 45-52.
  • 6Esa Rahtu, Janne Heikkilg. A simple and efficient saliency detector for background subtraction [C]//IEEE 12th International Conference on Computer Vision Workshops, 2009: 1137-1144.
  • 7Gopalakrishnan V, Hu Yiqun, Rajan D. Random walks on graphs for salient object detection in images [J]. IEEE Transactions on Image Processing(S105%7149), 2010, 19(12): 3232-3242.
  • 8Xiaodi Hou, Liqing Zhang. Saliency detection: a spectral residual approach[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2007: 1-8.
  • 9Guo Chenlei, Zhang Liming. A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression[J]. IEEE Transactions on Image Processing(S1057- 7149), 2010, 19(1): 185-198.
  • 10Gopalakrishnan V, Yiqun Hu, Rajan D. Salient region detection by modeling distributions of color and orientation[J], iEEE Transactions On Multimedia(S1520-9210), 2009, 11(5): 892-905.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部