期刊文献+

激光通信中PPM调制性能研究 被引量:7

Research of PPM Modulation Performance in Laser Communication System
下载PDF
导出
摘要 高功率、超远距离的光通信需要选择合适的调制解调方式,调制方式的选择是由系统的信道特性来决定的。PPM(Pulse Position Modulation)调制由于其功率利用率较高、传输效率高和抗干扰能力强等优点在光通信系统中被广泛应用。介绍了PPM的三种调制形式,并且对PPM调制系统的组成进行了研究,着重分析了PPM的调制性能,包括信号功率谱密度、信号的传输效率及误码率,证明PPM调制在保证一定的速率和传输功率尽可能小的要求下,是空间激光通信系统的最佳选择。 Optical communication with high-power and ultra-long distance needs appropriate modulation and demodulation. The modulation mode depends on the channel characteristics of the system. PPM (Pulse Position Modulation) is widely used in optical communication systems because of its high power efficiency, high transmission efficiency and anti-jamming ability, etc. In this paper, three PPM formats are presented, and the composition of the PPM modulation system is studied with the focus on the modulation performance of PPM, including the signal power spectral density, signal transmission efficiency and the bit error rate (BER). The results show that PPM is the best choice for space transmission power as small as possible. laser communication system under a certain rate and
出处 《半导体光电》 CAS CSCD 北大核心 2014年第2期321-324,353,共5页 Semiconductor Optoelectronics
基金 国家"863"计划项目
关键词 PPM 信号功率谱密度 传输效率 误码率 PPM signal power spectral density transmission efficiency BER
  • 相关文献

参考文献5

  • 1Abhilash D, Sankar A, Janakirarnan S, et al.Compressive Sensing for Pulse Position Modulated UWB Signal[M]. Berlin: Springer, 2013 : 115-121.
  • 2Qi C,Chen X, Qiu Y. Carrier-based randomized pulse position modulation of an indirect matrix converter for attenuating the harmonic peaks [J]. IEEE Trans. Power Electron. , 2013,28(7) :3539-3548.
  • 3李精华.无线光通信中PPM的RS级联编码调制研究[J].光通信技术,2012,36(2):30-32. 被引量:2
  • 4张鼎臣,周小林,杜建洪.自由空间光通信中的PPM迭代软解调算法[J].计算机工程,2013,39(4):1-4. 被引量:3
  • 5Rjeily C A. Maximum likelihood deeoder for pulse position modulation multi-source system: U. S. , 8238485[P]. 2012-8-7.

二级参考文献17

  • 1GAGLIARDI R M.Error probality in lasereom PPM systems.ln Proc Nat Teleeommon Conf [J].New Orleans,LA, 1981 :B 10.1.1-B 10.1.2.
  • 2MACKAY D J C.Good error corecting codes based on very sparse ma- trices[C].IEEE Trans.inf.Theory, 1999,45(2):399-431.
  • 3CAI Y,RAMANUJAM N, MORRIS J M,et al.Performance Limit of For- ward Error Correlation Codes in Optical Fiber Communications [C]. IEEE Optical Society of America,2000 ,ThF2-1-Tuf2-3.
  • 4Helstrom C W, Liu J W S, Gordon J P. Quantum- mechanical Communication Theory[J]. Proceedings of the IEEE, 1970, 58(10): 1578-1598.
  • 5Chan V W S. Free-space Optical Communications[J]. Journal of Lightwave Technology, 2006, 24(12): 4750- 4762.
  • 6Robinson B S, Kerman A J, Dauler E A, et al. 781 Mbit/s Photon-counting Optical Communication Using a Super- conducting Nanowire Detector[J]. Optics Letters, 2006, 31(4): 444-446.
  • 7Zhu Xiaoming, Kahn J M. Free-space Optical Communi- cation Through Atmospheric Turbulence Channels[J]. IEEE Trans. on Communications, 2002, 50(8): 1283-1300.
  • 8Hagenauer J, Offer E, Papke L. Iterative Decoding of Binary Block and Convolutional Codes[J]. IEEE Trans. on Information Theory, 1996, 42(2): 429-445.
  • 9Gagliardi R M, Karp S. Optical Communications[M]. 2nd ed. New York, USA: Wiley Company, 1995.
  • 10Hgenauer J. The Turbo Principle: Tutorial Introduction and State of the Art[C]//Proc. of the 1st International Sympo- sium on Turbo Codes. Brest, France: [s. n.], 1997: 1-12.

共引文献3

同被引文献44

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部