摘要
针对超材料优化设计参数多、权重各异的特点,提出一种基于加权实数编码的遗传算法,该算法采用等位基因或双倍基因实现对遗传基因的加权编码,是二进制编码中加权思想的推广,与普通遗传算法相比,加权实数编码遗传算法加入了人工选择因素,既可以加快种群收敛速度,又可以提高算法的求解质量,尤其适用于种群规模较大的遗传优化计算,文中以一个超材料吸波体的优化设计为例,对算法进行了验证。
A weighted real-coded genetic algorithm is proposed in this paper, in allusion to the characteristics of optimizing designs of metamaterials, which have many parameters and parameters of different powers in metamaterial structure. The algorithm utilizing allele or double gene to change the power of one gene, develops the idea of weighted encoded binary coding. Compared with common real-coded based genetic algorithm, the weighted real-coded genetic algorithm adds artificial selection in it, it can not only accelerate the speed of convergence, but also improve the solution quality, especially for the design of large-scale and long computation time. In this paper, the algorithm is verified by optimizing a metamaterial absorber.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2014年第8期436-442,共7页
Acta Physica Sinica
基金
国家自然科学基金(批准号:61331005
11204378
11274389
11304393
61302023)
中国博士后科学基金(批准号:2013M532131
2013M532221)
陕西省基础研究计划(批准号:2011JQ8031
2013JM6005)资助的课题~~
关键词
超材料
优化设计
遗传算法
加权实数编码
optimizing design
metamaterial
genetic algorithm
weighted real-coded