期刊文献+

一类n维空间Riesz分数阶扩散方程的解析解 被引量:4

Analytical solutions of fractional-in-space diffusion equation with Riesz fractional derivative in n dimensions
下载PDF
导出
摘要 文章讨论了n维空间Riesz分数阶扩散方程的解,用特征函数幂级数形式定义了n维分数阶拉普拉斯算子,并给出了分数阶拉普拉斯算子与Riesz分数阶导数之间的关系,最后用谱表示法导出了n维空间Riesz分数阶扩散方程在齐次和非齐次情况下,在有界区域上满足一定初边值条件的基本解。 The fundamental solutions of fractional-in-space diffusion equation with Riesz fractional de-rivative in n dimensions are considered .T he existing definitions of the fractional Laplacian in n dimen-sions are investigated by using eigenfunction expansion ,and the relations between fractional Laplacian and Riesz fractional derivative are given .Finally ,the fundamental solutions of homogeneous and non-homogeneous Riesz fractional derivative with an initial and boundary condition on a finite domain are derived by using spectral representation .
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第4期506-509,共4页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(60673192) 四川省科技厅资助项目(2013JY0125) 攀枝花学院院级培育资助项目(2012PY08) 攀枝花学院校级科研资助项目(2013YB05) 攀枝花学院校级科研创新资助项目(Y2013-04)
关键词 Riesz分数阶导数 空间分数阶扩散方程 Riemann-Liouville分数阶导数 解析解 Riesz fractional derivative fractional-in-space diffusion equation Riemann-Liouville frac-tional derivative analytical solution
  • 相关文献

参考文献4

二级参考文献51

  • 1张海,蒋威.一般退化中立型微分系统解的存在性及通解[J].合肥工业大学学报(自然科学版),2007,30(5):630-633. 被引量:3
  • 2郑祖庥.泛函微分方程[M].合肥:安徽教育出版社,1992.
  • 3Podlubny I. Fractional differential equations[M]. San Diego: Elsevier Academic Press, 1999:62-146.
  • 4Miller K S, Ross B. An introduction to the fractional calculus and fractional differential equations [M]. New York: John Wiley & Sons, 1993 : 1 - 174.
  • 5Bonilla B, Rivero M, Trujillo J J. On systems of linear fractional differential equations with constant coefficients [J]. Applied Math and Computation, 2007, 187 (1): 68-78.
  • 6Samko S G, Kilhas A A, Mariehev O I. Fractinal integrals and derivatives: theory and applications[M]. SwitzerLand: Gordon and Breach Science Publishers, 1993:1-267.
  • 7Hale J. Introduction to functional differential equations [M]. New York: Springer-Verlag, 1977 : 11-32.
  • 8Lakshmikantham V. Theory of fractional functional differential equations[J]. Nonlinear Analysis, 2008, 69(10): 3337-3343.
  • 9YANG Qianqian, LIU Fawang, TURNER I. Numerical methods for fractional partial differential equations with Riesz space fractional derivatives [ J ]. Applied Mathematical Modelling, 2010, 34 ( 1 ) : 200-218.
  • 10ILIC M, LIU Fawang, TURNER I, ANH V V. Numerical approximation of a fractional-in-space diffusion equation[J]. Fract Caculus Appl Anal, 2005, 8(3) :323-341.

共引文献12

同被引文献40

  • 1马亮亮.一种时间分数阶对流扩散方程的隐式差分近似[J].西北民族大学学报(自然科学版),2013,34(1):7-12. 被引量:5
  • 2常福宣,陈进,黄薇.反常扩散与分数阶对流-扩散方程[J].物理学报,2005,54(3):1113-1117. 被引量:26
  • 3佟淑娇,郑伟,陈宝智.有毒液体泄漏渗流污染后果分析[J].工业安全与环保,2006,32(10):56-58. 被引量:5
  • 4夏源,吴吉春.分数阶对流——弥散方程的数值求解[J].南京大学学报(自然科学版),2007,43(4):441-446. 被引量:13
  • 5PODLUBNY I. Fractional Differential Equations[ M]. New York, London:Academic Press, 1999.
  • 6HILFER R. Applications of Fractional Calculus in Physics [ M ].Singapore:Word Scientific,2000.
  • 7MORTON K W, MARYERS D F. Numerical Solution of Partial Differential Equation [ M ]. Cambridge:Cambridge University Press, 2005.
  • 8LUCHKO Y. Initial -boundary- value problems for the generalized multi -term time -fractional diffusion equation [ J ]. J Math Anal Appl,2011,374(2) :538 -548.
  • 9LIU F, ZHUANG P, ANH V, et al. Stability and convergence of the difference methods for the space -time fractional advection - diffusion equation [ J ]. Appl Math Comput, 2007,191 ( 1 ) : 2 - 20.
  • 10JIANG H, LIU F, TURNER I, et al. Analytical solutions for the multi - term time - space Caputo - Riesz fractional advection - diffusion equations on a finite domain[J]. J Math Anal Appl,2012,389(2) :1117 - 1127.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部