摘要
文章讨论了n维空间Riesz分数阶扩散方程的解,用特征函数幂级数形式定义了n维分数阶拉普拉斯算子,并给出了分数阶拉普拉斯算子与Riesz分数阶导数之间的关系,最后用谱表示法导出了n维空间Riesz分数阶扩散方程在齐次和非齐次情况下,在有界区域上满足一定初边值条件的基本解。
The fundamental solutions of fractional-in-space diffusion equation with Riesz fractional de-rivative in n dimensions are considered .T he existing definitions of the fractional Laplacian in n dimen-sions are investigated by using eigenfunction expansion ,and the relations between fractional Laplacian and Riesz fractional derivative are given .Finally ,the fundamental solutions of homogeneous and non-homogeneous Riesz fractional derivative with an initial and boundary condition on a finite domain are derived by using spectral representation .
出处
《合肥工业大学学报(自然科学版)》
CAS
CSCD
北大核心
2014年第4期506-509,共4页
Journal of Hefei University of Technology:Natural Science
基金
国家自然科学基金资助项目(60673192)
四川省科技厅资助项目(2013JY0125)
攀枝花学院院级培育资助项目(2012PY08)
攀枝花学院校级科研资助项目(2013YB05)
攀枝花学院校级科研创新资助项目(Y2013-04)