摘要
We present an investigation of double-resonance optical pumping (DROP) spectra under the condition of single-photon frequency detuning based on a cesium 6S1/2-6P3/2-8S1/2 ladder-type system with a room-temperature vapor cell. Two DROP peaks are found, and their origins are explored. One peak has a narrow linewidth due to the atomic coherence for a counterpropagating configuration; the other peak has a broad linewidth, owing to the spontaneous decay for a coprop-agating configuration. This kind of off-resonant DROP spectrum can be used to control and offset-lock a laser frequency to a transition between excited states. We apply this technique to a multiphoton cesium magneto-optical trap, which can efficiently trap atoms on both red and blue sides of the two-photon resonance.
We present an investigation of double-resonance optical pumping (DROP) spectra under the condition of single-photon frequency detuning based on a cesium 6S1/2-6P3/2-8S1/2 ladder-type system with a room-temperature vapor cell. Two DROP peaks are found, and their origins are explored. One peak has a narrow linewidth due to the atomic coherence for a counterpropagating configuration; the other peak has a broad linewidth, owing to the spontaneous decay for a coprop-agating configuration. This kind of off-resonant DROP spectrum can be used to control and offset-lock a laser frequency to a transition between excited states. We apply this technique to a multiphoton cesium magneto-optical trap, which can efficiently trap atoms on both red and blue sides of the two-photon resonance.
基金
Project supported by the National Basic Research Program of China(Grant No.2012CB921601)
the National Natural Science Foundation of China(Grant Nos.11104172,11274213,61205215,and 61227902)
the Project for Excellent Research Teams of the National Natural Science Foundation of China(Grant No.61121064)
the Research Project for Returned Abroad Scholars from Universities of Shanxi Province,China(Grant No.2012-015)
the Program for Science and Technology Star of Taiyuan,Shanxi,China(Grant No.12024707)