摘要
By using the non-equilibrium Green's function technique, we investigate the electronic transport properties in an Aharonov-Bohm interferometer coupling with Majorana fermions. We find a fixed unit conductance peak which is in-dependent of the other factors when the topological superconductor is grounded. Especially, an additional phase appears when the topological superconductor is in the strong Coulomb regime, which induces a new conductance resonant peak compared with the structure of replacing the topological superconductor by a quantum dot, and the conductance oscillation with the magnetic flux reveals a 2π phase shift by raising (lowering) a charge on the capacitor.
By using the non-equilibrium Green's function technique, we investigate the electronic transport properties in an Aharonov-Bohm interferometer coupling with Majorana fermions. We find a fixed unit conductance peak which is in-dependent of the other factors when the topological superconductor is grounded. Especially, an additional phase appears when the topological superconductor is in the strong Coulomb regime, which induces a new conductance resonant peak compared with the structure of replacing the topological superconductor by a quantum dot, and the conductance oscillation with the magnetic flux reveals a 2π phase shift by raising (lowering) a charge on the capacitor.
基金
Project supported by the National Basic Research Program of China(Grant No.2011CB922103)