期刊文献+

Flat-roof phenomenon of dynamic equilibrium phase in the negative bias temperature instability effect on a power MOSFET

Flat-roof phenomenon of dynamic equilibrium phase in the negative bias temperature instability effect on a power MOSFET
下载PDF
导出
摘要 The effect of the static negative bias temperature (NBT) stress on a p-channel power metal-oxide-semiconductor field-effect transistor (MOSFET) is investigated by experiment and simulation. The time evolution of the negative bias temperature instability (NBTI) degradation has the trend predicted by the reaction-diffusion (R-D) model but with an exaggerated time scale. The phenomena of the flat-roof section are observed under various stress conditions, which can be considered as the dynamic equilibrium phase in the R-D process. Based on the simulated results, the variation of the flat-roof section with the stress condition can be explained. The effect of the static negative bias temperature (NBT) stress on a p-channel power metal-oxide-semiconductor field-effect transistor (MOSFET) is investigated by experiment and simulation. The time evolution of the negative bias temperature instability (NBTI) degradation has the trend predicted by the reaction-diffusion (R-D) model but with an exaggerated time scale. The phenomena of the flat-roof section are observed under various stress conditions, which can be considered as the dynamic equilibrium phase in the R-D process. Based on the simulated results, the variation of the flat-roof section with the stress condition can be explained.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第5期521-524,共4页 中国物理B(英文版)
基金 Project supported by the National Basic Research Program of China(Grant No.2011CBA00606) the National Natural Science Foundation of China(Grant No.61106106)
关键词 negative bias temperature instability (NBTI) reaction-diffusion model interface traps powerMOSFET negative bias temperature instability (NBTI), reaction-diffusion model, interface traps, powerMOSFET
  • 相关文献

参考文献16

  • 1Islam A E, Kufluoglu H, Varghese D, Mahapatra S and Alam M A 2007 IEEE Trans. Electron. Dev. 54 2143.
  • 2Huard V, Denais M and Parthasarathy C 2006 Microelectron. Reliab. 46 1.
  • 3Schroder D K and Babcock J A 2003 J. Appl. Phys. 94 1.
  • 4Mahapatra S, Goel N, Desai S, Gupta S, Jose B, Mukhopadhyay S, Joshi K, Jain A, Islam A E and Alam M A 2013 IEEE Trans. Electron. Dev. 60 901.
  • 5Alam M A, Kufluoglu H, Varghese D and Mahapatra S 2007 Microelectron. Reliab. 47 853.
  • 6Grasser T, Kaczer B, Goes W, Reisinger H, Aichinger T, Hehenberger P, Wagner P J, Schanovsky F, Franco J, Roussel P and Nelhiebel M 2010 Proceedings of IEEE International Electron Devices Meeting, December 6-8, 2010 San Francisco, USA, p. 82.
  • 7Ma X H, Cao Y R and Hao Y 2010 Chin. Phys. B 19 117308.
  • 8Zhang Y, Pu S, Lei X Y, Chen Q, Ma X H and Hao Y 2013 Chin. Phys. B 22 117311.
  • 9Cao Y R, Ma X H, Hao Y and Tian W C 2010 Chin. Phys. B 19 097306.
  • 10Stojadinovi? N, Dankovi? D, Djori? Veljkovi? S, Davidovi? V, Mani? I and Golubovi? S 2005 Microelectron. Reliab. 45 1343.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部