摘要
目的:探讨人工神经网络( ANN)模型在个体2型糖尿病患病风险预测中的应用。方法:通过横断面调查对河南某农村社区8640名居民进行流行病学调查,按3砄1的比例随机分为训练集(6480人)与检验集(2160人),分别用于筛选变量、建立预测模型及对模型的检测和评价。分别应用ANN和logistic回归建立2型糖尿病预测模型,应用受试者工作特征曲线( ROC)评价预测模型的检验效能。结果:ANN预测模型的灵敏度(95%CI)=86.93(81.41~91.29)%、特异度(95%CI )=79.14(77.18~81.02)%、阳性预测值(95%CI )=31.86(28.60~35.03)%、阴性预测值(95%CI)=98.18(97.37~98.81)%优于logistic回归预测模型[灵敏度(95%CI)=62.81(55.73~69.47)%、特异度(95%CI)=71.70(69.52~73.79)%、阳性预测值(95%CI)=19.94(17.00~22.99)%、阴性预测值(95%CI)=94.50(93.32~95.57)%];ANN预测模型AUC(95%CI)=0.891(0.877~0.905)明显大于logistic回归预测模型[AUC(95%CI)=0.742(0.722~0.763)]。结论:在预测个体患2型糖尿病方面,ANN模型较logistic回归模型具有更好的预测效能。
Aim:To explore the potential application of artificial neural network ( ANN) on type 2 diabetes mellitus (T2DM), and then to develop an effective and inexpensive prediction approach .Methods:A cross-sectional survey was conducted.Out of 8 640 subjects who met inclusion criteria, 75%(n1 =6 480) were randomly selected to provide training set for constructing ANN and multivariate logistic regression ( MLR) models.The remaining 25%( n2 =2 160 ) were as-signed to validation set for performance comparisons of the ANN and MLR models .Predictive performance of different mod-els was analyzed by the receiver operating characteristic (ROC) curve using the validation set.Results:For ANN model, the sensitivity, specificity, positive and negative predictive values for identifying T 2DM were 86.93(81.41-91.29)%, 79.14(77.18-81.02)%, 31.86(28.60-35.03)%, and 98.18(97.37-98.81)%, respectively, while MLR model were only 62.81(55.73 -69.47)%, 71.70(69.52 -73.79)%, 19.94(17.00 -22.99)%, and 94.50(93.32 -95.57)%, respectively.AUC(95%CI) value for identifying T2DM when using the ANN model was 0.891(0.877 -0.905), showing more accurate predictive performance than the MLR model [AUC(95%CI)=0.742(0.722-0.763)]. Conclusion:The ANN model has a better discriminated performance than MLR model in the prediction of risk of T 2DM.
出处
《郑州大学学报(医学版)》
CAS
北大核心
2014年第2期180-183,共4页
Journal of Zhengzhou University(Medical Sciences)
基金
国家自然科学基金资助项目U1204823
U1304821
中国博士后特别资助基金资助项目201104401