期刊文献+

人工神经网络模型在2型糖尿病患病风险预测中的应用 被引量:23

Application of artificial neural network to predict individual risk of type 2 diabetes mellitus
下载PDF
导出
摘要 目的:探讨人工神经网络( ANN)模型在个体2型糖尿病患病风险预测中的应用。方法:通过横断面调查对河南某农村社区8640名居民进行流行病学调查,按3砄1的比例随机分为训练集(6480人)与检验集(2160人),分别用于筛选变量、建立预测模型及对模型的检测和评价。分别应用ANN和logistic回归建立2型糖尿病预测模型,应用受试者工作特征曲线( ROC)评价预测模型的检验效能。结果:ANN预测模型的灵敏度(95%CI)=86.93(81.41~91.29)%、特异度(95%CI )=79.14(77.18~81.02)%、阳性预测值(95%CI )=31.86(28.60~35.03)%、阴性预测值(95%CI)=98.18(97.37~98.81)%优于logistic回归预测模型[灵敏度(95%CI)=62.81(55.73~69.47)%、特异度(95%CI)=71.70(69.52~73.79)%、阳性预测值(95%CI)=19.94(17.00~22.99)%、阴性预测值(95%CI)=94.50(93.32~95.57)%];ANN预测模型AUC(95%CI)=0.891(0.877~0.905)明显大于logistic回归预测模型[AUC(95%CI)=0.742(0.722~0.763)]。结论:在预测个体患2型糖尿病方面,ANN模型较logistic回归模型具有更好的预测效能。 Aim:To explore the potential application of artificial neural network ( ANN) on type 2 diabetes mellitus (T2DM), and then to develop an effective and inexpensive prediction approach .Methods:A cross-sectional survey was conducted.Out of 8 640 subjects who met inclusion criteria, 75%(n1 =6 480) were randomly selected to provide training set for constructing ANN and multivariate logistic regression ( MLR) models.The remaining 25%( n2 =2 160 ) were as-signed to validation set for performance comparisons of the ANN and MLR models .Predictive performance of different mod-els was analyzed by the receiver operating characteristic (ROC) curve using the validation set.Results:For ANN model, the sensitivity, specificity, positive and negative predictive values for identifying T 2DM were 86.93(81.41-91.29)%, 79.14(77.18-81.02)%, 31.86(28.60-35.03)%, and 98.18(97.37-98.81)%, respectively, while MLR model were only 62.81(55.73 -69.47)%, 71.70(69.52 -73.79)%, 19.94(17.00 -22.99)%, and 94.50(93.32 -95.57)%, respectively.AUC(95%CI) value for identifying T2DM when using the ANN model was 0.891(0.877 -0.905), showing more accurate predictive performance than the MLR model [AUC(95%CI)=0.742(0.722-0.763)]. Conclusion:The ANN model has a better discriminated performance than MLR model in the prediction of risk of T 2DM.
出处 《郑州大学学报(医学版)》 CAS 北大核心 2014年第2期180-183,共4页 Journal of Zhengzhou University(Medical Sciences)
基金 国家自然科学基金资助项目U1204823 U1304821 中国博士后特别资助基金资助项目201104401
关键词 2型糖尿病 人工神经网络 LOGISTIC回归 预测模型 type 2 diabetes mellitus artificial neural network logistic regression prediction model
  • 相关文献

参考文献16

  • 1Nathan DM, Buse JB, Davidson MB, et al. Medical man- agement of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes [J]. Diabetes Care, 2009, 32(1): 193.
  • 2Whiting DR, Guariguata L, Weil C, et al. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030[J]. Diabetes Res Clin Pract, 2011, 94 (3) : 311.
  • 3Norris SL, Kansagara D, Bougatsos C, et al. Screening a- dults for type 2 diabetes: a review of the evidence for the U.S. Preventive Services Task Foree[ J ]. Ann Intern Med, 2008, 148(11): 855.
  • 4孙锦峰,耿云亮,郭奕瑞,王高帅,高飞飞,刘晓田,尤爱国,王重建.Elman神经网络与ARIMA模型对流感发病率预测效果的比较[J].郑州大学学报(医学版),2013,48(5):584-587. 被引量:12
  • 5Sato F, Shimada Y, Selaru FM, et al. Prediction of sur- vival in patients with esophageal carcinoma using artificial neuralnetworks[J]. Cancer, 2005, 103(8): 1596.
  • 6Dumont TM, Rughani AI, Tranmer BI. Prediction of symp- tomatic cerebral vasospasm after aneurysmal subarachnoidhemorrhage with an artificial neural network: feasibility and comparison with logistic regression models[ J]. World Neu- rosurg, 2011, 75(1) : 57.
  • 7Forberg JL, Green M, Bjork J, et al. In search of the best method to predict acute coronary syndrome using only the electrocardiogram from the emergency department [ J ]. J Electrocardiol, 2009, 42( 1 ): 58.
  • 8张矗,吴逸明,吴拥军,王静,刘素玲,刘莹.人工神经网络技术在纤维支气管镜诊断肺癌中的应用[J].郑州大学学报(医学版),2010,45(1):113-115. 被引量:5
  • 9Lin CC, Bai YM, Chen JY, et al. Easy and low-cost iden- tification of metabolic syndrome in patients treated with second-generation antipsychotics: artificial neural network and logistic regression models [ J ]. J Clin Psychiatry, 2010, 71(3) : 225.
  • 10Li YC, Chiu WT, Jian WS. Neural networks modeling for surgical decisions on traumatic brain injury patients [ J ]. Int J Med Inform, 2000, 57(1) : 1.

二级参考文献34

  • 1Kim KG,Goo JM,Kim JH,et al. Computer-aided diagnosis of localized ground-glass opacity in the lung at CT: initial experience [ J ]. Radiology, 2005,237 ( 2 ) :657.
  • 2Lilja H, Li Jia DR. Early diagnosis and staging [ J ]. Prostate Cancer Prostatic Diseases, 1999,2 ( S1 ) : 15.
  • 3Twellmann T, Lichte O, Nattkemper TW. An adaptive tissue characterization network for model-free visualization of dynamic contrast-enhanced magnetic resonance image data [ J ]. IEEE Trans Med Imaging,2005,24 ( 10 ) : 1 256.
  • 4Eflekhar B, Mohammad K, Ardebili HE, et al. Comparison of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data[ J]. BMC Med Inform Deeis Mak,2005,5:3.
  • 5Arana E, Marti-Bonmati L, Bautista D, et al. Qualitative diagnosis of calvarial metastasis by neural network and logistic regression[ J]. Acad Radiol,2004,11 ( 1 ) :45.
  • 6Nakamura K, Yoshida H, Engelmann R, et al. Computerized analysis of the likelihood of malignancy in solitary pulmonary nodules with use of artificial neural networks [ J ]. Radiology, 2000,214 ( 3 ) : 823.
  • 7Asada N, Doi K, MacMahon H, et al. Potential usefulness of an artificial neural network for differential diagnosis of interstitial lung diseases : pilot study[ J ]. Radiology, 1990, 177(3) :857.
  • 8Vesselle H,Turcotte E, Wiens L, et al. Application of a neural nerwork to improve nodal staging accuracy with 18F- FDG PET in non-small cell lung cancer[ J ]. J Nucl Med, 2003,44(12) :1 918.
  • 9Li F, Li Q, Engelmann R, et al. Improving radiologists recommendations with computer-aided diagnosis for management of small nodules detected by CT [ J]. Acad Radiol, 2006,13 ( 8 ) : 943.
  • 10American Diabetes Association. Clinical practice recommendations [J].Diabetes Care, 1998, 21 :S20-22.

共引文献21

同被引文献171

引证文献23

二级引证文献118

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部