期刊文献+

复合Bi系超导多芯带材轴向荷载作用下的临界电流退化模型与分析

Critical Current Degradation Model and Analysis of Bi-Based Superconducting Multi-filamentary Composite Tape under Axial Load
原文传递
导出
摘要 超导材料由于在外部载荷作用下表现出的超导性能退化效应严重制约了其工程实际应用。基于脆性纤维金属基增强复合材料损伤理论,应用Weibull分布函数建立了轴向荷载作用下的复合多芯Bi系超导带材的力学变形对临界电流影响的退化模型。给出了轴向加载和卸载过程超导带材临界电流随轴向应变的变化关系;并对超导带材不同初始损伤以及预应变情形下的临界电流随轴向应变的变化关系和退化进行了理论预测,能够给出与实验结果吻合良好的轴向应变对临界电流的退化影响。 Superconducting materials are always severely restricted in practical engineering applications due to the degradation of superconductivity under external mechanical loads. Based on the damage theory of fragile fiber reinforced metal matrix composites and the Weibull distribution function, a degradation model to describe the mechanical deformation influence of the Bi-based superconducting multi-filamentary composite tape on its critical current under axial load was proposed. The critical currents of superconducting tape with the axial strain in the processes of axial loading and unloading were analyzed. The degradation of the critical current of superconducting tape under the conditions of different initial damages and pre-strains was predicted theoretically. It is shown that the theoretical model we developed can predict well the degradation of critical current of the Bi-based superconducting multi-filamentary composite tape with axial strain. The results are in good agreement with the experimental data. The present investigation will be helpful for superconducting composites in applications
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2014年第4期936-940,共5页 Rare Metal Materials and Engineering
基金 国家自然科学基金重点项目(11032006) 创新研究群体项目(11121202)
关键词 高温超导带材 轴向变形 预应变 损伤统计理论 临界电流退化 high-temperature superconducting tape axial strain pre-strain statistical damage theory degradation of critical current
  • 相关文献

参考文献9

  • 1Yamazaki K,Kagiyama T,Kikuchi M et al.Supercond Sci Technol[J].2012,25(5):054 015.
  • 2陈兴品,余晓伟,尚都,郑军,刘庆.应变方式对Bi-2223/Ag超导带材中微裂纹的形成及临界电流的影响[J].稀有金属材料与工程,2012,41(7):1206-1210. 被引量:4
  • 3Shinl J K,Ochiai S,Okuda H et al.Supercond Sci Technol[J].2008,21(11):115 007.
  • 4Bennie Haken,Arno Godeke,Henk-Jan Schuver et al.IEEE Trans Magne[J].1996,32(4):2720.
  • 5Cheggour N,Lul X F,Holesinger T G et al.Supercond Sci Technol[J].2012,25(1):015 001.
  • 6Shin Hyung-Seop,Katagiri Kazumune.Supercond Sci Technol [J].2003,16(9):1012.
  • 7Toda A,Arai T,Ochiai S et al.Physica C[J].2010,470(20):1346.
  • 8Zhang Guomin,Schwartz Justin,Lin Liangzhen et al.Appl Phys Lett[J].2004,85(20):4687.
  • 9Ochiai S,Arai T,Toda A et al.Journal of Applied Physics [J].2010,108(6):063 905.

二级参考文献15

  • 1李成山,吕朝阳,郝清滨,郑会玲,张平祥.拉伸应变对Bi-2223银及银合金包套带材临界电流的影响[J].稀有金属材料与工程,2006,35(11):1691-1694. 被引量:2
  • 2TФnnesen O, Daumling M, Jensen K H et al. Supercond Sci Technol[J], 2004, 17(5): 1.
  • 3Kurusu T, Ono M, Hansi Set al. IEEE Trans Appl Supercond [J], :2004, 14(2): 393.
  • 4Cheng M C, Yan B P, Lee K H et al. Supercond Sci Technol[J], 2005, 18(8): 1100.
  • 5Huang Y K, Haken B T, Herman H Jet al. IEEE Trans Appl Supercond[J], 1999, 9(2): 2702.
  • 6Aloysius R P, Sobha A, Guruswamy Pet al. Supercond Sci Technol[J], 2001, 14:85.
  • 7Osamura K, Sugano M. Physica C[J], 2001, 357-360:1128.
  • 8Ochiai S, Miyazaki N, Doko D et al. Journal of Nuclear Materials[J], 2004, 329-333:1585.
  • 9Okuda H, Morishita K, Ochiai Set al. Physica C[J], 2004, 411: 114.
  • 10Sugano M, Osamura K. Physica C[J], 2004, 402:341.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部